首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Studies of citrate synthase (CitA) were carried out to investigate its role in morphological development and biosynthesis of antibiotics in Streptomyces coelicolor. Purification of CitA, the major vegetative enzyme activity, allowed characterization of its kinetic properties. The apparent K(m) values of CitA for acetyl coenzyme A (acetyl-CoA) (32 microM) and oxaloacetate (17 microM) were similar to those of citrate synthases from other gram-positive bacteria and eukaryotes. CitA was not strongly inhibited by various allosteric feedback inhibitors (NAD(+), NADH, ATP, ADP, isocitrate, or alpha-ketoglutarate). The corresponding gene (citA) was cloned and sequenced, allowing construction of a citA mutant (BZ2). BZ2 was a glutamate auxotroph, indicating that citA encoded the major citrate synthase allowing flow of acetyl-CoA into the tricarboxylic acid (TCA) cycle. Interruption of aerobic TCA cycle-based metabolism resulted in acidification of the medium and defects in morphological differentiation and antibiotic biosynthesis. These developmental defects of the citA mutant were in part due to a glucose-dependent medium acidification that was also exhibited by some other bald mutants. Unlike other acidogenic bald strains, citA and bldJ mutants were able to produce aerial mycelia and pigments when the medium was buffered sufficiently to maintain neutrality. Extracellular complementation studies suggested that citA defines a new stage of the Streptomyces developmental cascade.  相似文献   

3.
Streptomyces coelicolor colonies differentiate both morphologically, producing aerial spore chains, and physiologically, producing antibiotics as secondary metabolites. Single mutations, which block both aspects of differentiation, define bld (bald colony) genes. To identify new bld genes, mutagenized colonies were screened for blocks in the earliest stage of sporulation, the formation of aerial mycelia, and blocks in antibiotic synthesis. The mutations in 12 mutants were mapped; in each strain, the pleiotropic phenotype was due to a single mutation. Seven of the strains contained mutations in known bld loci, bldA and bldB. Three strains contained mutations in a new locus, bldG, and two contained mutations in another new locus, bldH. Like the previously defined bldA mutants, the bldG and bldH mutants were developmentally blocked on glucose. On a variety of carbon sources whose utilization was subject to glucose repression, the developmental blocks were partially relieved for bldG (and bldA) mutants and fully relieved for bldH mutants. These results are compatible with an hypothesis which suggests that there are two alternative controls on S. coelicolor differentiation, one of which is glucose repressible.  相似文献   

4.
A glucose kinase (glkA) mutant of Streptomyces coelicolor A3(2) M145 was selected by the ability to grow in the presence of the nonmetabolizable glucose analog 2-deoxyglucose. In this glkA mutant, carbon catabolite repression of glycerol kinase and agarase was relieved on several carbon sources tested, even though most of these carbon sources are not metabolized via glucose kinase. This suggests that catabolite repression is not regulated by the flux through glucose kinase and that the protein itself has a regulatory role in carbon catabolite repression. A 10-fold overproduction of glucose kinase also results in relief of catabolite repression, suggesting that excess glucose kinase can titrate the repressing signal away. This could be achieved directly by competition of excess glucose kinase with its repressing form for binding sites on DNA promoter regions or indirectly by competition for binding of another regulatory protein.  相似文献   

5.
6.
The SCO5461 gene of Streptomyces coelicolor A3(2) codes for an ADP-ribosyltransferase enzyme that is predicted to be a transmembrane protein with an extracellular catalytic domain. PCR-targeted disruption of the gene resulted in a mutant that differentiated normally on complex SFM medium; however, morphological differentiation in minimal medium was significantly delayed and this phenotype was even more pronounced on osmotically enhanced minimal medium. The mutant did not sporulate when it was grown on R5 medium, however the normal morphological differentiation was restored when the strain was cultivated beside the wild-type S. coelicolor M145 strain. Comparison of the pattern of ADP-ribosylated proteins showed a difference between the mutant and the wild type, fewer modified proteins were present in the cellular crude extract of the mutant strain. These results support our previous suggestions that protein ADP-ribosylation is involved in the regulation of differentiation and antibiotic production and secretion in Streptomyces.  相似文献   

7.
Streptomyces peucetius var. caesius produces a family of secondary metabolites called anthracyclines. Production of these compounds is negatively affected in the presence of glucose, galactose, and lactose, but the greatest effect is observed under conditions of excess glucose. Other carbon sources, such as arabinose or glutamate, show either no effect or stimulate production. Among the carbon sources that negatively affect anthracycline production, glucose is consumed in greater concentrations. We determined glucose and galactose transport in S. peucetius var. caesius and in a mutant of this strain whose anthracycline production is insensitive to carbon catabolite repression (CCR). In the original strain, incorporation of glucose and galactose was stimulated when the microorganism was grown in media containing these sugars, although we also observed basal galactose incorporation. Both the induced and the basal incorporation of galactose were suppressed when the microorganism was grown in the presence of glucose. Furthermore, adding glucose directly during the transport assay also inhibited galactose incorporation. In the mutant strain, we observed a reduction in both glucose (48%) and galactose (81%) incorporation compared to the original. Galactose transport in this mutant showed reduced sensitivity to the negative effect of glucose; however, it was still sensitive to inhibition. The deficient transport of these sugars, as well as CCR sensitivity to glucose in this mutant was corrected when the mutant was transformed with the SCO2127 region of the Streptomyces coelicolor genome. Our results support a role for glucose as the most easily utilized carbon source capable of exerting the greatest repression on anthracycline biosynthesis. In consequence, glucose also prevented the repressive effect of galactose by suppressing its incorporation. This suggests the participation of an integral regulatory system, which is initiated by an increase in incorporation of repressive sugars and their metabolism as a prerequisite for establishing the phenomenon of CCR in S. peucetius var. caesius.  相似文献   

8.
9.
10.
The Tn3-like transposon Tn4556 (and its derivatives Tn4560 and Tn4563) has been used for insertion mapping of genetic loci cloned on plasmids, but it has been difficult to obtain chromosomal insertions, largely because of the lack of a strong selection against transposon donor molecules. In this communication, we report two efficient selection techniques for transposition and their use in the isolation of chromosomal insertion mutations. A number of independent Streptomyces coelicolor morphological mutants (bld and whi) were obtained. Two of the bld mutations were mapped to locations on the chromosome by SCP1-mediated conjugation; at least one mutation, bld-5m1, appears to define a novel locus involved in control of S. coelicolor morphogenesis and antibiotic production.  相似文献   

11.
12.
13.
A fluorescent pigment was isolated from the culture fluid of Methanobacterium thermoautotrophicum strain H. This pigment was shown to be 7,8-didemethyl-8-hydroxy-5-deazariboflavin by various spectroscopic and chromatographic techniques. This compound was previously described as the FO acid hydrolysis fragment of coenzyme F420. On the basis of the time of appearance of the pigment in the course of fermentation, it is suggested that this substance may be an over-produced biosynthetic precursor of F420.  相似文献   

14.
15.
16.
17.
Tan H  Tian Y  Yang H  Liu G  Nie L 《Archives of microbiology》2002,177(3):274-278
A 1.4-kb DNA fragment from Streptomyces ansochromogenes accelerated mycelium formation of S. ansochromogenes when present on a multicopy plasmid. The DNA fragment contains one complete open reading frame, designated samR, encoding a protein with 213 amino acids that contains a likely DNA-binding helix-turn-helix motif close to its N-terminus. The deduced SamR protein resembles the product of the hppR gene, which is involved in the regulation of catabolism of 3-(3-hydroxyphenyl) propionate in Rhodococcus globerulus. A samR disruption mutant was constructed that presented a bald phenotype and failed to form aerial hyphae and spores. We suggest that samR plays an important role in the emergence of aerial hyphae from substrate mycelium. An almost identical gene of Streptomyces coelicolor was also subjected to gene disruption. Surprisingly, the mutant was able to develop an aerial mycelium, but it remained white and deficient in sporulation instead of forming gray spores.  相似文献   

18.
19.
Despite the fact that most industrial processes for secondary metabolite production are performed with submerged cultures, a reliable developmental model for Streptomyces under these culture conditions is lacking. With the exception of a few species which sporulate under these conditions, it is assumed that no morphological differentiation processes take place. In this work, we describe new developmental features of Streptomyces coelicolor A3(2) grown in liquid cultures and integrate them into a developmental model analogous to the one previously described for surface cultures. Spores germinate as a compartmentalized mycelium (first mycelium). These young compartmentalized hyphae start to form pellets which grow in a radial pattern. Death processes take place in the center of the pellets, followed by growth arrest. A new multinucleated mycelium with sporadic septa (second mycelium) develops inside the pellets and along the periphery, giving rise to a second growth phase. Undecylprodigiosin and actinorhodin antibiotics are produced by this second mycelium but not by the first one. Cell density dictates how the culture will behave in terms of differentiation processes and antibiotic production. When diluted inocula are used, the growth arrest phase, emergence of a second mycelium, and antibiotic production are delayed. Moreover, pellets are less abundant and have larger diameters than in dense cultures. This work is the first to report on the relationship between differentiation processes and secondary metabolite production in submerged Streptomyces cultures.  相似文献   

20.
Li W  Ying X  Guo Y  Yu Z  Zhou X  Deng Z  Kieser H  Chater KF  Tao M 《Journal of bacteriology》2006,188(24):8368-8375
SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification of the open reading frame SCO5582 as nsdA, a gene negatively affecting Streptomyces differentiation. The disruption of chromosomal nsdA caused the overproduction of spores and of three of four known S. coelicolor antibiotics of quite different chemical types. In at least one case (that of actinorhodin), this was correlated with premature expression of a pathway-specific regulatory gene (actII-orf4), implying that nsdA in the wild-type strain indirectly repressed the expression of the actinorhodin biosynthesis cluster. nsdA expression was up-regulated upon aerial mycelium initiation and was strongest in the aerial mycelium. NsdA has DUF921, a Streptomyces protein domain of unknown function and a conserved SXR site. A site-directed mutation (S458A) in this site in NsdA abolished its function. Blast searching showed that NsdA homologues are present in some Streptomyces genomes. Outside of streptomycetes, NsdA-like proteins have been found in several actinomycetes. The disruption of the nsdA-like gene SCO4114 had no obvious phenotypic effects on S. coelicolor. The nsdA orthologue SAV2652 in S. avermitilis could complement the S. coelicolor nsdA-null mutant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号