首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factor XIII (FXIII) is a transglutaminase involved in blood coagulation. The enzyme is activated by thrombin cleaving the peptide bond R(37)-G(38). A common mutation V34L found in FXIII has been correlated with protection from myocardial infarction. Also FXIII V34L is activated more quickly than the wild type. In the present study, FXIII (28-41) V34L mutant peptide bound to thrombin has been modeled and molecular dynamics simulations were carried out using Insight II. An average structure was calculated after simulation. The structure showed significant difference from the crystal structure of the wild type FXIII (28-37) peptide bound to thrombin. In the crystal structure the peptide adopts a folded conformation in such a way that the hydrophobic side chains of V(29) and V(34) occupy the apolar binding site of thrombin. The modeled V34L peptide adopts a significantly different conformation and only the bulkier L(34) occupies the apolar binding site while V(29) side chain is exposed to the bulk solvent. Hence, this may speed up the release of FXIII from thrombin after its activation.  相似文献   

2.
Venkatesan P  Hu Y  Kaback HR 《Biochemistry》2000,39(35):10656-10661
Helix X in the lactose permease of Escherichia coli contains two residues that are irreplaceable with respect to active transport, His322 and Glu325, as well as Lys319, which is charge-paired with Asp240 in helix VII. Structural and dynamic features of transmembrane helix X are investigated here by site-directed thiol modification of 14 single-Cys replacement mutants with N-[(14)C]ethylmaleimide (NEM) in right-side-out membrane vesicles. Permease mutants with a Cys residue at position 326, 327, 329, 330, or 331 in the cytoplasmic half of the transmembrane domain are alkylated by NEM at 25 degrees C, a mutant with Cys at position 315 at the periplasmic surface is labeled in the presence of substrate exclusively, and mutants with Cys at positions 317, 318, 320, 321, 324, 328, 332, or 333 do not react with NEM under the conditions tested. Binding of substrate causes increased labeling of a Cys residue at position 315 and decreased labeling of Cys residues at positions 326, 327, and 329. Studies with methanethiosulfonate ethylsulfonate indicate that Cys residues at positions 326, 329, 330, and 331 in the cytoplasmic half are accessible to the aqueous phase from the periplasmic face of the membrane. Ligand binding results in clear attenuation of solvent accessibility of Cys at position 326 and a marginal increase in accessibility of Cys at position 327 to solvent. The findings indicate that the cytoplasmic half of helix X is more reactive/accessible to thiol reagents and more exposed to solvent than the periplasmic half. Furthermore, positions that reflect ligand-induced conformational changes are located on the same face of helix X as Lys319, His322, and Glu325.  相似文献   

3.
The Pseudomonas putida cytochrome P-450 was alkylated with the SH-reagent, 2-bromoacetamido-4-nitrophenol. One out of eight cysteine residues present in the enzyme reacted rapidly while another 3 ~ 4 cysteine residues were gradually alkylated at longer reaction times. The derivative in which the most reactive cysteine residue was labeled with this reagent was hydrolyzed with trypsin and a tryptic peptide isolated. From the amino acid composition and end group analysis of the peptide, the rapidly reacting cysteine residue was shown to be Cys 355. This cysteine residue is probably exposed on the surface and is involved in the dimerization of the enzyme. The amino acid sequence about cysteine 355 shows sequence homology with residues 429–445 of the rat liver cytochrome P-450-LM-2.  相似文献   

4.
ThepH-titration and dynamic behaviour of the seven lysine side chains in bovine calmodulin were studied by carbon-13 NMR. The amino groups of the calcium saturated protein and its proteolytic fragments TR1C(1–75) and TR2C (78–148) were dimethylated with carbon-13 labeled formaldehyde; this modification did not alter the protein's structure or its ability to activate the enzyme cyclic nucleotide phosphodiesterase. Tentative assignments for 5 out of the 7 dimethyl lysine resonances could be obtained by comparing spectra of the fully and partially modified protein, with those of the proteolytic fragments. ThepKa values measured for calcium saturated calmodulin ranged between 9.5 (Lys 75) and 10.2 (Lys 13); two residues (Lys 94 and Lys 13) showed a biphasic titration curve suggesting their possible involvement in ion-pairs. The dynamic behavior of the lysine side chains was deduced from spin lattice relaxation measurements. All side chains were flexible and this was not influenced by the removal of calcium, or the addition of the calmodulin antagonist trifluoperazine. The latter data suggest that the lysine side chains are not directly involved in calmodulin's target binding sites.  相似文献   

5.
D Lukacova  G R Matsueda  E Haber  G L Reed 《Biochemistry》1991,30(42):10164-10170
As the final enzyme in the coagulation cascade, activated fibrin stabilizing factor or factor XIII catalyzes the intermolecular cross-linking of fibrin chains. To study this enzyme in plasma, we derived a monoclonal antibody (MAb 309) against a peptide sequence (NH2-G-V-N-L-Q-E-F-C-COOH) in the thrombin activation site of factor XIII. Radioimmunoassays indicate that MAb 309 binds specifically to both platelet and plasma factor XIII. Peptide inhibition studies demonstrate that the MAb binds equally well to the factor XIII (FXIII) zymogen and the active form of FXIII (FXIIIa). In immunoblots of whole platelet lysates, MAb 309 binds only to FXIII and does not cross-react with other proteins. In saturation binding studies, the antibody shows a binding avidity of (1.75 +/- 0.35) x 10(9) M-1. MAb 309 also inhibited 99% of apparent FXIIIa activity in a standard transglutaminase assay. SDS-PAGE analysis of fibrin clots showed that MAb 309 inhibited fibrin gamma-gamma cross-linking. Moreover, MAb 309 accelerated the lysis of plasma clots, consistent with inhibition of fibrin-fibrin and fibrin-alpha 2-antiplasmin cross-linking. Immunoblotting experiments revealed that MAb 309 affected apparent FXIIIa activity by inhibiting the thrombin activation of the FXIII zymogen. In addition to its utility as a specific probe for the FXIII a-subunit, the strategy used to obtain MAb 309 may be used to generate MAbs that inhibit the activation of other coagulation factor zymogens.  相似文献   

6.
Autoproteolytic activation and processing of human polymorphonuclear leucocyte (PMNL) type IV procollagenase (gelatinase) was initiated by HgCl2 and was investigated by kinetic analysis and N-terminal sequence determination of the reaction products. In the first instance the propeptide domain was lost by subsequent cleavage of the Asp15-Leu16, Glu40-Met41, Leu52-Leu53 and Ala74-Met75 peptide bonds. The PRCGVPD sequence motif (residues Pro78-Asp84), which is conserved in all metalloproteinases and expected to be relevant for latency, remained uncleaved at the activated enzyme. The generated intermediate was further processed by three C-terminal cleavages. The Glu666-Leu667, Ala506-Glu507 and Ala398-Leu399 bonds were hydrolysed successively. From the fragmentation products we were able to conclude that three released fragment peptides contained unpaired free cysteine with the residues Cys497, Cys653, Cys683. Cleavage of the first C-terminal peptide bond resulted in the loss of one of the conserved Cys residues of the hemopexin-like domain, whereas the Cys residue of the PRCGVPD motif was retained at the fully active enzyme. The possibility of an entirely different activation mechanism for PMNL type IV procollagenase is discussed.  相似文献   

7.
Fibrin clot structure is highly dependent on factor XIII activity. Activated FXIII catalyzes the formation of the peptide bonds between the gamma and alpha chains in noncovalently bound fibrin polymers and incorporates various adhesive and antifibrinolytic proteins into the final fibrin clot. In the absence of activated FXIII, clots are unstable and susceptible to fibrinolysis. Several studies have examined the effects of FXIII polymorphisms on final fibrin clot structure and clinical thrombotic risk. The Val34Leu FXIII polymorphism is associated with increased activation by thrombin. In the presence of saturating thrombin concentrations, however, FXIIIa specific enzyme activity is not affected by genetic polymorphisms. Fibrin clots formed in the presence of the FXIII 34Leu polymorphisms do tend to be thinner and less porous, however. The effects of prothrombin concentrations on clot structure have suggested that thinner clots are more resistant to fibrinolysis and associated with increased thrombotic risk. Most clinical studies of 34Leu FXIII carriers, however, have demonstrated a lower incidence of both venous and arterial thrombosis in carriers of the mutant allele compared to Val/Val carriers. One recent study has suggested that the interactions between FXIII phenotype and plasma fibrinogen concentrations significantly influence clinical thrombotic risk.  相似文献   

8.
Human adamalysin 19 (a disintegrin and metalloproteinase 19, hADAM19) is activated by furin-mediated cleavage of the prodomain followed by an autolytic processing within the cysteine-rich domain at Glu586-Ser587, which occurs intramolecularly, producing an NH2 terminal fragment (N-fragment) associated with its COOH-terminal fragment (C-fragment), most likely through disulfide bonds. When stable Madin-Darby canine kidney (MDCK) transfectants overexpressing soluble hADAM19 were treated with dithiothreitol (DTT) or with media at pH 6.5, 7.5, or 8.5, the secretion and folding of the enzyme were not affected. Autolytic processing was blocked by DTT and pH 6.5 media, which favor disulfide reduction, but was increased by pH 8.5 media, which promotes disulfide formation. Cys605, Cys633, Cys639, and Cys643 of the C-fragment appear to be partially responsible for the covalent association between the C-fragment and the N-fragment. A new autolytic processing site at Lys543-Val544 was identified in soluble mutants when these cysteine residues were individually mutated to serine residues. Shed fragments were also detectable in the media from MDCK cells stably expressing the full-length Cys633Ser mutant. Ilomastat/GM6001 inhibited hADAM19 with an IC50 of 447 nM, but scarcely affected the shedding process. The cysteine-rich domain likely forms disulfide bonds to regulate the autolytic processing and shedding of hADAM19.  相似文献   

9.
1. FXIII was isolated and purified over 4000 fold from human placenta to apparent electrophoretic homogeneity by a new procedure including ethanol precipitation. DEAE-Cellulose, molecular sieving on Sephacryl S-300 and Phenyl-Sepharose chromatography. 2. Its pI was about 5.1. Under appropriate conditions, the incubation of FXIII in the presence of thrombin did not lead to inactivation cut in the polypeptidic chain. 3. FXIII was also activated by CaCl2 and, in a lesser extent, by other divalent cations like SrCl2, BaCl2 or MgCl2. 4. The binding of calcium to FXIII exhibited a negative cooperativity. 5. The activity-pH curve of the calcium-activated enzyme did not appear very different from that of the thrombin-activated enzyme.  相似文献   

10.
Turner BT  Maurer MC 《Biochemistry》2002,41(25):7947-7954
Factor XIII catalyzes the formation of isopeptide bonds between noncovalently associated fibrin monomers in the final stages of the blood coagulation cascade. This results in a rigid, covalently linked network that is much more resistant to proteolytic degradation. Calcium ion is critical to this process, and its continued presence after activation aids in maintenance of Factor XIII activity. Hydrogen/deuterium exchange experiments were conducted on recombinant Factor XIII a(2) using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The method revealed changes in the structure of Factor XIII a(2) localized to different areas of the protein that were related to the manner in which the enzyme was activated and the calcium environment in which it was maintained. A possible substrate recognition region in the catalytic core (220-230) shows an increase in deuteration upon activation. The degree of deuteration varies depending on the calcium environment in which the active enzyme is maintained. A portion of the beta-sandwich domain (98-104) exhibits a decrease in deuteration upon activation by exposure to calcium alone. A third change occurs in the beta-barrel 1 domain of the protein, a portion of which (526-546) shows a decrease in deuteration upon activation by calcium exposure, but almost none at all when the enzyme is activated by thrombin. The pattern of observed changes reveals individual contributions of calcium and thrombin to activating the enzyme toward substrate binding and exposure of the active site.  相似文献   

11.
Isetti G  Maurer MC 《Biochemistry》2004,43(14):4150-4159
In blood coagulation, thrombin helps to activate factor XIII by cleaving the activation peptide at the R37-G38 peptide bond. The residues N-terminal to the scissile bond are important in determining rates of hydrolysis. Solution studies of wild-type and mutant peptides of factor XIII AP (28-37) suggest residues P(4)-P(1) are most critical in substrate recognition. By contrast, the X-ray crystal structure of FXIII AP (28-37) displays all of the residues, P(10)-P(1), interacting with the thrombin active site in a conformation similar to that of fibrinogen Aalpha (7-16) [Sadasivan, C., and Yee, V. C. (2000) J. Biol. Chem. 275, 36942-36948]. Peptides were therefore synthesized with the N-terminal P(10)-P(6) residues removed to further characterize interactions of thrombin with factor XIII activation peptides. The truncations have no adverse effects on thrombin's ability to bind and to hydrolyze the shortened peptides. The wild-type FXIII AP (33-41) V34 sequence actually exhibits a decrease in K(m) relative to the longer (28-41) sequence whereas the cardioprotective FXIII AP (33-41) V34L exhibits a further increase in k(cat) relative to its longer parent sequence. One-dimensional proton line broadening NMR and 2D transferred-NOESY studies indicate that the shortened peptides maintain similar bound conformations as their FXIII AP (28-37) counterparts. Furthermore, the distinctive NOE between the L34 and P36 side chains is preserved. Kinetic and NMR studies thus reveal that the N-terminal portions of FXIII AP (28-37) (V34 and V34L) are not necessary for effective interaction with the thrombin active site surface. FXIII activation peptides bind to thrombin in a manner more like PAR1 than fibrinogen Aalpha.  相似文献   

12.
We have investigated the interaction between calcium ions and erythrocyte transglutaminase and the enzyme activation. The binding involves both high and low affinity sites, but only the former ones are relevant for activation. The binding of calcium and the activation are modified by treatment with NBD-Cl and with PLP suggesting the presence of cysteine and lysine residues at the high affinity binding sites. The interaction of the enzyme with calcium is not calmodulin dependent and is easily detected as a shift in electrophoretic mobility in the presence of SDS.  相似文献   

13.
The free cysteine residues in the extremely thermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) were characterized using selective chemical modification with the stable nitroxyl biradical bis(1-oxy-2,2,5,5-tetramethyl-3-imidazoline-4-yl)disulfide, via a thiol-disulfide exchange reaction and with 2[14C]iodoacetic acid, via S-alkylation. The respective reactions were monitored by electron paramagenetic resonance (EPR) and by the incorporation of the radioactive label. In native TBADH, the rapid modification of one cysteine residue per subunit by the biradical and the concomitant loss of catalytic activity was reversed by DTT. NADP protected the enzyme from both modification and inactivation by the biradical. RPLC fingerprint analysis of reduced and S-carboxymethylated lysyl peptides from the radioactive alkylated enzyme identified Cys 203 as the readily modified residue. A second cysteine residue was rapidly modified with both modification reagents when the catalytic zinc was removed from the enzyme by o-phenanthroline. This cysteine residue, which could serve as a putative ligand to the active-site zinc atom, was identified as Cys 37 in RPLC. The EPR data suggested a distance of < or 10 A between Cys 37 and Cys 203. Although Cys 283 and Cys 295 were buried within the protein core and were not accessible for chemical modification, the two residues were oxidized to cystine when TBADH was heated at 75 degrees C, forming a disulfide bridge that was not present in the native enzyme, without affecting either enzymatic activity or thermal stability. The status of these cysteine residues was verified by site directed mutagenesis.  相似文献   

14.
Within the ubiquitin degradation pathway, the canonical signal is a lysine 48-linked polyubiquitin chain that is assembled upon an internal lysine residue of a substrate protein. Once constructed, this ubiquitin chain becomes the principle signal for recognition and target degradation by the 26S proteasome. The mechanism by which polyubiquitin chains are assembled on a substrate protein, however, has yet to be clearly defined. In an in vitro model system, purified E2-ubiquitin thiolester was unable to catalyze the formation of polyubiquitin chains in the absence of the ubiquitin-activating enzyme E1. Mutagenesis of key residues within the E1 active site revealed that its conserved catalytic cysteine residue is essential for the formation of these chains. Moreover, inactivation of the E2 active site had no effect on the ability of E1 to catalyze ubiquitin chain formation. These findings strongly suggest E1 is responsible for not only the activation of ubiquitin but also for the direct catalytic extension of a lysine 48-linked polyubiquitin chain.  相似文献   

15.
The three-dimensional structures of the isoleucine ketimine and the pyridoxamine phosphate forms of human mitochondrial branched chain aminotransferase (hBCATm) have been determined crystallographically at 1.9 A resolution. The hBCATm-catalyzed transamination can be described in molecular terms together with the earlier solved pyridoxal phosphate forms of the enzyme. The active site lysine, Lys202, undergoes large conformational changes, and the pyridine ring of the cofactor tilts by about 18 degrees during catalysis. A major determinant of the enzyme's substrate and stereospecificity for L-branched chain amino acids is a group of hydrophobic residues that form three hydrophobic surfaces and lock the side chain in place. Short-chain aliphatic amino acid side chains are unable to interact through van der Waals contacts with any of the surfaces whereas bulky aromatic side chains would result in significant steric hindrance. As shown by modeling, and in agreement with previous biochemical data, glutamate but not aspartate can form hydrogen bond interactions. The carboxylate group of the bound isoleucine is on the same side as the phosphate group of the cofactor. These active site interactions are largely retained in a model of the human cytosolic branched chain aminotransferase (hBCATc), suggesting that residues in the second tier of interactions are likely to determine the specificity of hBCATc for the drug gabapentin. Finally, the structures reveal a unique role for cysteine residues in the mammalian BCAT. Cys315 and Cys318, which immediately follow a beta-turn (residues 311-314) and are located just outside the active site, form an unusual thiol-thiolate hydrogen bond. This beta-turn positions Thr313 for its interaction with the pyridoxal phosphate oxygens and substrate alpha-carboxylate group.  相似文献   

16.
Conformation and microenvironment at the active site of 1,4-beta-D-glucan glucanohydrolase was probed with fluorescent chemo-affinity labeling using o-phthalaldehyde. OPTA has been known to form a fluorescent isoindole derivative by cross-linking the proximal thiol and amino groups of cysteine and lysine. Modification of lysine of the enzyme by TNBS and of cysteine residue by PHMB abolished the ability of the enzyme to form an isoindole derivative with OPTA. Kinetic analysis of the TNBS and PHMB-modified enzyme suggested the presence of essential lysine and cysteine residues, respectively, at the active site of the enzyme. The substrate protection of the enzyme with carboxymethylcellulose (CMC) confirmed the involvement of lysine and cysteine residues in the active site of the enzyme. Multiple sequence alignment of peptides obtained by tryptic digestion of the enzyme showed cysteine is one of the conserved amino acids corroborating the chemical modification studies.  相似文献   

17.
Aspartate transaminase from chicken heart cytosol was immobilized covalently on activated thiol-Sepharose and digested with trypsin. After washing, the thiol-containing peptides were eluted with 2-mercaptoethanol and further purified by gel-filtration and paper chromatography. Three pure cysteinyl peptides were isolated. One of them may be represented as Ile-(Asp, Met, Cys, Gly, Leu, Thr2)-Lys; this peptide is identical to the fragment comprizing residues 387--395 in the peptide chain of aspartate transaminase from pig heart cytosol. It thus contains a cysteine residue homologous to Cys-390 of the pig heart enzyme. The second cysteinyl peptide had the following composition and partial sequence: Tyr-Phe-Val-Ser-Glu-Gly-Phe-Glu-Leu-Phe (Cys, Ala, Glu, Ser2, Phe)Lys, which corresponds to the sequence 242--258 of the pig enzyme and thus contains a cysteine residue homologous to Cys-252. The third cysteinyl peptide was similar to the tryptic peptide of the pig enzyme containing Cys-191.  相似文献   

18.
Evidence for activation of tissue factor by an allosteric disulfide bond   总被引:12,自引:0,他引:12  
Chen VM  Ahamed J  Versteeg HH  Berndt MC  Ruf W  Hogg PJ 《Biochemistry》2006,45(39):12020-12028
Tissue Factor (TF) is the mammalian plasma membrane cofactor responsible for initiation of blood coagulation. Binding of blood coagulation factor VIIa to TF activates the serine proteinase zymogens factors IX and X by limited proteolysis leading to the formation of a thrombin and fibrin meshwork that stabilizes the thrombus. TF on the plasma membrane of cells resides mostly in a cryptic configuration, which rapidly transforms into an active configuration in response to certain stimuli. The extracellular part of TF consists of two fibronectin type III domains. The disulfide bond in the membrane proximal domain (Cys186-Cys209) is atypical for domains of this type in that it links adjacent strands in the same beta sheet, what we have called an allosteric bond. Ablation of the allosteric disulfide by mutating both cysteine residues severely impairs procoagulant activity. The thiol-alkylating agents N-ethylmaleimide and methyl methanethiolsulfonate block TF activation by ionomycin, while the thiol-oxidizing agent HgCl2 and dithiol cross-linkers promote activation. TF activation could not be explained by exposure of phosphatidylserine on the outer leaflet of the plasma membrane. Cryptic TF contained unpaired cysteine thiols that were depleted upon activation, and de-encryption was associated with a change in the conformation of the membrane-proximal domain. These findings imply that the Cys186-Cys209 disulfide bond is reduced in the cryptic form of TF and that activation involves formation of the disulfide. It is likely that formation of this disulfide bond changes the conformation of the domain that facilitates productive binding of factors IX and X.  相似文献   

19.
B S Gibbs  S J Benkovic 《Biochemistry》1991,30(27):6795-6802
A pterin analogue, 5-[(3-azido-6-nitrobenzylidene)amino]-2,6-diamino-4-pyrimidinone (ANBADP), was synthesized as a probe of the pterin binding site of phenylalanine hydroxylase. The photoaffinity label has been found to be a competitive inhibitor of the enzyme with respect to 6,7-dimethyltetrahydropterin, having a Ki of 8.8 +/- 1.1 microM. The irreversible labeling of phenylalanine hydroxylase by the photoaffinity label upon irradiation is both concentration and time dependent. Phenylalanine hydroxylase is covalently labeled with a stoichiometry of 0.87 +/- 0.08 mol of label/enzyme subunit. 5-Deaza-6-methyltetrahydropterin protects against inactivation and both 5-deaza-6-methyltetrahydropterin and 6-methyltetrahydropterin protect against covalent labeling, indicating that labeling occurs at the pterin binding site. Three tryptic peptides were isolated from [3H]ANBADP-photolabeled enzyme and sequenced. All peptides indicated the sequence Thr-Leu-Lys-Ala-Leu-Tyr-Lys (residues 192-198). The residues labeled with [3H]ANBADP were Lys198 and Lys194, with the majority of the radioactivity being associated with Lys198. The reactive sulfhydryl of phenylalanine hydroxylase associated with activation of the enzyme was also identified by labeling with the chromophoric label 5-(iodoacetamido)fluorescein [Parniak, M. A., & Kaufman, S. (1981) J. Biol. Chem. 256, 6876]. Labeling of the enzyme resulted in 1 mol of fluorescein bound per phenylalanine hydroxylase subunit and a concomitant activation of phenylalanine hydroxylase to 82% of the activity found with phenylalanine-activated enzyme. Tryptic and chymotryptic peptides were isolated from fluorescein-labeled enzyme and sequenced. The modified residue was identified as Cys236.  相似文献   

20.
Human RNase H1 is active only under reduced conditions. Oxidation as well as N-ethylmaleimide (NEM) treatment of human RNase H1 ablates the cleavage activity. The oxidized and NEM alkylated forms of human RNase H1 exhibited binding affinities for the heteroduplex substrate comparable with the reduced form of the enzyme. Mutants of human RNase H1 in which the cysteines were either deleted or substituted with alanine exhibited cleavage rates comparable with the reduced form of the enzyme, suggesting that the cysteine residues were not required for catalysis. The cysteine residues responsible for the observed redox-dependent activity of human RNase H1 were determined by site-directed mutagenesis to involve Cys(147) and Cys(148). The redox states of the Cys(147) and Cys(148) residues were determined by digesting the reduced, oxidized, and NEM-treated forms of human RNase H1 with trypsin and analyzing the cysteine containing tryptic fragments by micro high performance liquid chromatography-electrospray ionization-Fourier transform ion cyclotron mass spectrometry. The tryptic fragment Asp(131)-Arg(153) containing Cys(147) and Cys(148) was identified. The mass spectra for the Asp(131)-Arg(153) peptides from the oxidized and reduced forms of human RNase H1 in the presence and absence of NEM showed peptide masses consistent with the formation of a disulfide bond between Cys(147) and Cys(148). These data show that the formation of a disulfide bond between adjacent Cys(147) and Cys(148) residues results in an inactive enzyme conformation and provides further insights into the interaction between human RNase H1 and the heteroduplex substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号