首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DDGS and wet distillers' grains are the major co-products of the dry grind ethanol facilities. As they are mainly used as animal feed, a typical compositional analysis of the DDGS and wet distillers' grains mainly focuses on defining the feedstock's nutritional characteristics. With an increasing demand for fuel ethanol, the DDGS and wet distillers' grains are viewed as a potential bridge feedstock for ethanol production from other cellulosic biomass. The introduction of DDGS or wet distillers' grains as an additional feed to the existing dry grind plants for increased ethanol yield requires a different approach to the compositional analysis of the material. Rather than focusing on its nutritional value, this new approach aims at determining more detailed chemical composition, especially on polymeric sugars such as cellulose, starch and xylan, which release fermentable sugars upon enzymatic hydrolysis. In this paper we present a detailed and complete compositional analysis procedure suggested for DDGS and wet distillers' grains, as well as the resulting compositions completed by three different research groups. Polymeric sugars, crude protein, crude oil and ash contents of DDGS and wet distillers' grains were accurately and reproducibly determined by the compositional analysis procedure described in this paper.  相似文献   

2.
Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.  相似文献   

3.
Bacterial contaminants of fuel ethanol production   总被引:2,自引:0,他引:2  
Bacterial contamination is an ongoing problem for commercial fuel ethanol production facilities. Both chronic and acute infections are of concern, due to the fact that bacteria compete with the ethanol-producing yeast for sugar substrates and micronutrients. Lactic acid levels often rise during bouts of contamination, suggesting that the most common contaminants are lactic acid bacteria. However, quantitative surveys of commercial corn-based fuel ethanol facilities are lacking. For this study, samples were collected from one wet mill and two dry grind fuel ethanol facilities over a 9 month period at strategic time points and locations along the production lines, and bacterial contaminants were isolated and identified. Contamination in the wet mill facility consistently reached 106 bacteria/ml. Titers from dry grind facilities were more variable but often reached 108/ml. Antibiotics were not used in the wet mill operation. One dry grind facility added antibiotic to the yeast propagation tank only, while the second facility dosed the fermentation with antibiotic every 4 h. Neither dosing procedure appeared to reliably reduce overall contamination, although the second facility showed less diversity among contaminants. Lactobacillus species were the most abundant isolates from all three plants, averaging 51, 38, and 77% of total isolates from the wet mill and the first and second dry grind facilities, respectively. Although populations varied over time, individual facilities tended to exhibit characteristic bacterial profiles, suggesting the occurrence of persistent endemic infections.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

4.
An engineering-economic model was developed to compare the profitability of the wet fractionation process, a generic dry fractionation process, and the conventional dry grind process. Under market conditions as of January 2011, only fractionation processes generated a positive cash flow. Reduced unit manufacturing costs and increased ethanol production capacity were two major contributions. Corn and ethanol price sensitivity analysis showed that the wet fractionation process always outperformed a generic dry fractionation process at any scenario considered in this research. A generic dry fractionation process would provide better economic performance than the conventional dry grind process if corn price was low and ethanol price was high. All three processes would perform more resiliently if the DDGS price was determined by its composition.  相似文献   

5.
Fermentations with new recombinant organisms.   总被引:7,自引:0,他引:7  
United States fuel ethanol production in 1998 exceeded the record production of 1.4 billion gallons set in 1995. Most of this ethanol was produced from over 550 million bushels of corn. Expanding fuel ethanol production will require developing lower-cost feedstocks, and only lignocellulosic feedstocks are available in sufficient quantities to substitute for corn starch. Major technical hurdles to converting lignocellulose to ethanol include the lack of low-cost efficient enzymes for saccharification of biomass to fermentable sugars and the development of microorganisms for the fermentation of these mixed sugars. To date, the most successful research approaches to develop novel biocatalysts that will efficiently ferment mixed sugar syrups include isolation of novel yeasts that ferment xylose, genetic engineering of Escherichia coli and other gram negative bacteria for ethanol production, and genetic engineering of Saccharoymces cerevisiae and Zymomonas mobilis for pentose utilization. We have evaluated the fermentation of corn fiber hydrolyzates by the various strains developed. E. coli K011, E. coli SL40, E. coli FBR3, Zymomonas CP4 (pZB5), and Saccharomyces 1400 (pLNH32) fermented corn fiber hydrolyzates to ethanol in the range of 21-34 g/L with yields ranging from 0.41 to 0.50 g of ethanol per gram of sugar consumed. Progress with new recombinant microorganisms has been rapid and will continue with the eventual development of organisms suitable for commercial ethanol production. Each research approach holds considerable promise, with the possibility existing that different "industrially hardened" strains may find separate applications in the fermentation of specific feedstocks.  相似文献   

6.
Pathways for development of a biorenewables industry   总被引:1,自引:0,他引:1  
The advanced energy initiative to reduce the nation's future demand for oil has resulted in the definition of a number of pathways for the development of the bio-renewables industry. This paper gives an overview of the pathways which could lead to both ethanol and other types of bio-products. The methods that would be used for cellulose conversion also apply to adding value for the co-products of ethanol production. Process milestones and pathways for research that would enable corn dry mill operations to improve are described. A corn dry mill improvement pathway is outlined, and introduces the topics that are covered in this particular special volume.  相似文献   

7.
Distillers dried grains with solubles (DDGS) and corn gluten feed (CGF) are major coproducts of ethanol production from corn dry grind and wet milling facilities, respectively. These coproducts contain important nutrients, nevertheless, high levels of phosphorus (P). About 50-80% of the P in these products is in an organically bound form known as phytate. The phytate P in these products cannot be digested by nonruminant animals. Consequently, large quantities of phytate are deposited into the soil with the animal wastes which potentially could cause P pollution in soil and underground water resources. As regulations on the concentration of P material in ethanol production coproducts become more restrictive, measures need to be taken for effective extraction of phytate P from the coproducts to make these processes more environmentally compatible. Proper marketing of coproducts is critical to the overall economy of ethanol production facilities. In this study, distribution of P compounds in different streams of dry grind and wet milling operations was determined. In the dry grind process, the highest P concentration was found to be in the condensed distillers solubles (CDS) at about 1.34 wt.% (db). About 59% of P in this stream was in phosphates form. The highest concentration of P in the wet milling process was found in the light steep water at about 3.4 wt.% (db). In this stream, about 22% of P was attributed to phosphates.  相似文献   

8.
With rapid growth of fuel ethanol industry, and concomitant increase in distillers dried grains with solubles (DDGS), new corn fractionation technologies that reduce DDGS volume and produce higher value coproducts in dry grind ethanol process have been developed. One of the technologies, a dry degerm, defiber (3D) process (similar to conventional corn dry milling) was used to separate germ and pericarp fiber prior to the endosperm fraction fermentation. Recovery of germ and pericarp fiber in the 3D process results in removal of lipids from the fermentation medium. Biosynthesis of lipids, which is important for cell growth and viability, cannot proceed in strictly anaerobic fermentations. The effects of ten different lipid supplements on improving fermentation rates and ethanol yields were studied and compared to the conventional dry grind process. Endosperm fraction (from the 3D process) was mixed with water and liquefied by enzymatic hydrolysis and was fermented using simultaneous saccharification and fermentation. The highest ethanol concentration (13.7% v/v) was achieved with conventional dry grind process. Control treatment (endosperm fraction from 3D process without lipid supplementation) produced the lowest ethanol concentration (11.2% v/v). Three lipid treatments (fatty acid ester, alkylphenol, and ethoxylated sorbitan ester 1836) were most effective in improving final ethanol concentrations. Fatty acid ester treatment produced the highest final ethanol concentration (12.3% v/v) among all lipid supplementation treatments. Mean final ethanol concentrations of alkylphenol and ethoxylated sorbitan ester 1836 supplemented samples were 12.3 and 12.0% v/v, respectively.Mention of brand or firm names does not constitute an endorsement by University of Illinois or USDA above others of similar nature not mentioned  相似文献   

9.
We investigated the system expansion approach to net energy analysis for ethanol production from domestic corn grain. Production systems included in this study are ethanol production from corn dry milling and corn wet milling, corn grain production (the agricultural system), soybean products from soybean milling (i.e. soybean oil and soybean meal) and urea production to determine the net energy associated with ethanol derived from corn grain. These five product systems are mutually interdependent. That is, all these systems generate products which compete with or displace all other comparable products in the market place. The displacement ratios between products compare the equivalence of their marketplace functions. The net energy, including transportation to consumers, is 0.56 MJnet/MJ of ethanol from corn grain regardless of the ethanol production technology employed. Using ethanol as a liquid transportation fuel could reduce domestic use of fossil fuels, particularly petroleum. Sensitivity analyses show that the choice of allocation procedures has the greatest impact on fuel ethanol net energy. Process energy associated with wet milling, dry milling and the corn agricultural process also significantly influences the net energy due to the wide ranges of available process energy values. The system expansion approach can completely eliminate allocation procedures in the foreground system of ethanol production from corn grain.  相似文献   

10.
Distillers' grains (DG), a co-product of a dry grind ethanol process, is an excellent source of supplemental proteins in livestock feed. Studies have shown that, due to its high polymeric sugar contents and ease of hydrolysis, the distillers' grains have potential as an additional source of fermentable sugars for ethanol fermentation. The benefit of processing the distillers' grains to extract fermentable sugars lies in an increased ethanol yield without significant modification in the current dry grind technology. Three different potential configurations of process alternatives in which pretreated and hydrolyzed distillers' grains are recycled for an enhanced overall ethanol yield are proposed and discussed in this paper based on the liquid hot water (LHW) pretreatment of distillers' grains. Possible limitations of each proposed process are also discussed. This paper presents a compositional analysis of distillers' grains, as well as a simulation of the modified dry grind processes with recycle of distillers' grains. Simulated material balances for the modified dry grind processes are established based on the base case assumptions. These balances are compared to the conventional dry grind process in terms of ethanol yield, compositions of its co-products, and accumulation of fermentation inhibitors. Results show that 14% higher ethanol yield is achievable by processing and hydrolyzing the distillers' grains for additional fermentable sugars, as compared to the conventional dry grind process. Accumulation of fermentation by-products and inhibitory components in the proposed process is predicted to be 2-5 times higher than in the conventional dry grind process. The impact of fermentation inhibitors is reviewed and discussed. The final eDDGS (enhanced dried distillers' grains) from the modified processes has 30-40% greater protein content per mass than DDGS, and its potential as a value-added process is also analyzed. While the case studies used to illustrate the process simulation are based on LHW pretreated DG, the process simulation itself provides a framework for evaluation of the impact of other pretreatments.  相似文献   

11.
12.
Corn hulls and corn germ meal were both evaluated as feedstocks for production of ethanol for biofuel. Currently, these fibrous co-products are combined with corn steep liquor and the fermentation bottoms (if available) and marketed as cattle feed. Samples were obtained from wet and dry corn mills. The corn hulls and germ meal were evaluated for starch and hemicellulose compositions. Starch contents were 12 to 32% w/w and hemicellulose (arabinoxylans) contents were 23 to 64% w/w. Corn fibrous samples were hydrolysed, using dilute sulphuric acid, into mixed sugar streams containing arabinose, glucose and xylose. Total sugar concentrations in the hydrolysate varied from 8.4 to 10.8% w/v. The hydrolysates were fermented to ethanol using recombinant E. coli strains K011 and SL40. Ethanol yields were 0.38 to 0.41g ethanol produced/g total sugars consumed and fermentations were completed in 60h or less. However, residual xylose was detected for each hydrolysate fermentation and was especially significant for fermentations using strain SL40. Strain K011 was a superior ethanologenic strain compared with strain SL40 in terms of both ethanol yield and maximum productivity.  相似文献   

13.
Grain-to-ethanol production has increased steadily in the United States in the past few decades, which resulted in remarkable records in the availability of co-products. Dry-grind is the most common method of ethanol production worldwide, which concentrates the corn and yeast nutrients in the downstream operations. The ethanol co-products have traditionally been a commodity for livestock feed as they contain desirable nutrients, mostly sold as distiller’s grains. The liquid fraction produced after the centrifugation of the bottoms of the ethanol rectifying and distilling operations is named thin stillage, produced at volumes several times greater than those of ethanol. A portion of thin stillage is normally recycled as backset water, while the remaining goes through a series of evaporations. Evaporating a large amount of water from thin stillage is an energy-consuming process and recycling the thin stillage may lead to the accumulation of nutrients in co-products in distiller’s grains. There are several other industrial processes to utilize thin stillage, such as oil extraction, anaerobic digestion, and secondary fermentation. Recently, promising results have been reported on the production of important commodity chemicals, extracting high-value products, and energy production from thin stillage. This review provides an overview on the new processes and products via valorization of thin stillage by innovative technologies that are being currently developed. The new applications of thin stillage discussed in this review could open new opportunities for the ethanol plants and ethanol researchers by increasing the revenue and simultaneously reducing negative environmental impacts of ethanol production.  相似文献   

14.
A modification of the conventional dry grind process for producing ethanol from yellow dent corn is considered with respect to its economic value. Process modifications include recycling distillers' grains, after being pretreated and hydrolyzed, with the ground corn and water to go through fermentation again and increase ethanol yields from the corn starch. A dry grind financial model, which has been validated against other financial models in the industry, is utilized to determine the financial impact of the process changes. The hypothesis was that the enhanced process would yield higher revenues through additional ethanol sales, and higher valued dried distillers' grains (DDGS), due to its higher protein content, to mitigate the drop in DDGS yields. A 32% increase in net present value (NPV) for the overall operation is expected when applying the process modifications to a 100million gallon ethanol plant, and an enzyme cost of $0.20 for each additional gallon of ethanol produced. However, there may be no value added to the enhanced dried distillers' grains (eDDGS), even in light of its higher protein levels, as current pricing is expected to be more sensitive to the amino acid profile than the total protein level, and the eDDGS has lower lysine levels, a key amino acid. Thus, there is a decrease in revenue from eDDGS due to the combination of no price change and loss of DDGS yield to ethanol. The financial improvements are a result of the increased revenue from higher ethanol yields outpacing the sum of all added costs, which include higher capital costs, larger loan payments, increased operating costs, and decreased revenues from dried distillers' grains.  相似文献   

15.
The dry milling ethanol industry produces distiller's grains as major co-products, which are composed of unhydrolyzed and unfermented polymeric sugars. Utilization of the distiller's grains as an additional source of fermentable sugars has the potential to increase overall ethanol yields in current dry grind processes. In this study, controlled pH liquid hot water pretreatment (LHW) and ammonia fiber expansion (AFEX) treatment have been applied to enhance enzymatic digestibility of the distiller's grains. Both pretreatment methods significantly increased the hydrolysis rate of distiller's dried grains with solubles (DDGS) over unpretreated material, resulting in 90% cellulose conversion to glucose within 24h of hydrolysis at an enzyme loading of 15FPU cellulase and 40 IU beta-glucosidase per gram of glucan and a solids loading of 5% DDGS. Hydrolysis of the pretreated wet distiller's grains at 13-15% (wt of dry distiller's grains per wt of total mixture) solids loading at the same enzyme reduced cellulose conversion to 70% and increased conversion time to 72h for both LHW and AFEX pretreatments. However, when the cellulase was supplemented with xylanase and feruloyl esterase, the pretreated wet distiller's grains at 15% or 20% solids (w/w) gave 80% glucose and 50% xylose yields. The rationale for supplementation of cellulases with non-cellulolytic enzymes is given by Dien et al., later in this journal volume. Fermentation of the hydrolyzed wet distiller's grains by glucose fermenting Saccharomyces cerevisiae ATCC 4124 strain resulted in 100% theoretical ethanol yields for both LHW and AFEX pretreated wet distiller's grains. The solids remaining after fermentation had significantly higher protein content and are representative of a protein-enhanced wet DG that would result in enhanced DDGS. Enhanced DDGS refers to the solid product of a modified dry grind process in which the distiller's grains are recycled and processed further to extract the unutilized polymeric sugars. Compositional changes of the laboratory generated enhanced DDGS are also presented and discussed.  相似文献   

16.
This study conducts a life cycle assessment of a simulated dry mill corn ethanol facility in California’s Central Valley retrofitted to also produce ethanol from corn stover, a cellulosic feedstock. The assessment examines three facility designs, all producing corn ethanol and wet distiller’s grains and solubles as a co-product: a baseline facility with no cellulosic retrofit, a facility retrofitted with a small capacity for stover feedstock, and a facility retrofitted for a large capacity of stover feedstock. Corn grain is supplied by rail from the Midwest, while stover is sourced from in-state farms and delivered by truck. Two stover feedstock supply scenarios are considered, testing harvest rates at 25 or 40 % of stover mass. Allocation is required to separate impacts attributable to co-products. Additional scenarios are explored to assess the effect of co-product allocation methods on life cycle assessment results for the two fuel products, corn ethanol and stover ethanol. The assessment tracks greenhouse gas (GHG) emissions, energy consumption, criteria air pollutants, and direct water consumption. The GHG intensity of corn ethanol produced from the three facility designs range between 61.3 and 68.9 g CO2e/MJ, which includes 19.8 g CO2e/MJ from indirect land use change for Midwestern corn grain. The GHG intensity of cellulosic ethanol varies from 44.1 to 109.2 g CO2e/MJ, and 14.6 to 32.1 g CO2e/MJ in the low and high stover capacity cases, respectively. Total energy input ranges between 0.60 and 0.71 MJ/MJ for corn ethanol and 0.13 to 2.29 MJ/MJ for stover ethanol. This variability is the result of the stover supply scenarios (a function of harvest rate) and co-product allocation decisions.  相似文献   

17.
Summary Natural isolates of the carotenoid-producing yeastPhaffia rhodozyma were analyzed for their ability to grow and to produce carotenoids in culture media composed exclusively of co-products of corn wet-milling for fuel ethanol production. FiveP. rhodozyma strains were tested for biomass produced (dry weight) and carotenoid yield. Six co-products were examined, ranging in cost from approximately $0.02 per kg to $0.11 per kg, all less expensive than conventional or agricultural growth substrates previously tested. The three co-products allowing the greatest accumulation of biomass and carotenoids byP. rhodozyma were thin stillage (TS), corn condensed distiller's solubles (CCDS) and corn gluten feed (CGF). Of the medium compositions tested, 10–15% CGF, 70% TS and 6–8% CCDS generally allowed maximum carotenoid production. Cultures grown in these three media produced up to 65%. 148% and 104% of the carotenoid yield per ml of yeast extract/malt extract (YM) cultures, respectively. Under the conditions tested, this was at an approximate medium cost of $0.67 per g carotenoids for CCDS and $0.73 per g for CGF as compared to $385.00 per g for YM. These results indicate that certain co-products of corn wet-milling can serve, at the appropriate concentration, as efficient, economical substrates for growth and carotenoid production byPhaffia rhodozyma.The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.  相似文献   

18.
Fractionation of distiller’s grains into value added products may serve to improve the economic viability of dry grind corn ethanol facilities in the wake of variable corn and ethanol prices. This research is aimed at creating a high protein, high lysine product from the grain using alkaline protein extractions in conjunction with hydrolysis of the remaining fiber to sugars which are then fermented to ethanol. Alkaline extractions improved the lysine content in protein products, although protein solubility did not exceed 45% of the total protein. In addition, oligomeric carbohydrates, starch, and other water solubles were also extracted, leading to a low purity protein product. Resulting sugar yields following ammonia fiber expansion (AFEX) pretreatment were also lower for extracted distiller’s grains. From these experiments, it does not appear likely that alkaline extraction is a useful tool for fractionation of distiller’s grains. However, pretreatment and hydrolysis can be an effective tool for further fractionation of protein.  相似文献   

19.
Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ±0.15% (w/v) and ±0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R 2 = 0.69–0.79) and DP4+ (R 2 = 0.8–0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R 2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.  相似文献   

20.
The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5–10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R 2 > 0.98).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号