首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two biological processes regulate light‐induced skin colour change. A fast ‘physiological pigmentation change’ (i.e. circadian variations or camouflage) involves alterations in the distribution of pigment containing granules in the cytoplasm of chromatophores, while a slower ‘morphological pigmentation change’ (i.e. seasonal variations) entails changes in the number of pigment cells or pigment type. Although linked processes, the neuroendocrine coordination triggering each response remains largely obscure. By evaluating both events in Xenopus laevis embryos, we show that morphological pigmentation initiates by inhibiting the activity of the classical retinal ganglion cells. Morphological pigmentation is always accompanied by physiological pigmentation, and a melatonin receptor antagonist prevents both responses. Physiological pigmentation also initiates in the eye, but with repression of melanopsin‐expressing retinal ganglion cell activity that leads to secretion of alpha‐melanocyte‐stimulating hormone (α‐MSH). Our findings suggest a model in which eye photoperception links physiological and morphological pigmentation by altering α‐MSH and melatonin production, respectively.  相似文献   

2.
Melanopsin photopigments, Opn4x and Opn4m, were evolutionary selected to “see the light” in systems that regulate skin colour change. In this review, we analyse the roles of melanopsins, and how critical evolutionary developments, including the requirement for thermoregulation and ultraviolet protection, the emergence of a background adaptation mechanism in land‐dwelling amphibian ancestors and the loss of a photosensitive pineal gland in mammals, may have helped sculpt the mechanisms that regulate light‐controlled skin pigmentation. These mechanisms include melanopsin in skin pigment cells directly inducing skin darkening for thermoregulation/ultraviolet protection; melanopsin‐expressing eye cells controlling neuroendocrine circuits to mediate background adaptation in amphibians in response to surface‐reflected light; and pineal gland secretion of melatonin phased to environmental illuminance to regulate circadian and seasonal variation in skin colour, a process initiated by melanopsin‐expressing eye cells in mammals, and by as yet unknown non‐visual opsins in the pineal gland of non‐mammals.  相似文献   

3.
Light‐regulated skin colour change is an important physiological process in invertebrates and lower vertebrates, and includes daily circadian variation and camouflage (i.e. background adaptation). The photoactivation of melanopsin‐expressing retinal ganglion cells (mRGCs) in the eye initiates an uncharacterized neuroendocrine circuit that regulates melanin dispersion/aggregation through the secretion of alpha‐melanocyte‐stimulating hormone (α‐MSH). We developed experimental models of normal or enucleated Xenopus embryos, as well as in situ cultures of skin of isolated dorsal head and tails, to analyse pharmacological induction of skin pigmentation and α‐MSH synthesis. Both processes are triggered by a melanopsin inhibitor, AA92593, as well as chloride channel modulators. The AA9253 effect is eye‐dependent, while functional data in vivo point to GABAA receptors expressed on pituitary melanotrope cells as the chloride channel blocker target. Based on the pharmacological data, we suggest a neuroendocrine circuit linking mRGCs with α‐MSH secretion, which is used normally during background adaptation.  相似文献   

4.
Lower vertebrates use rapid light‐regulated changes in skin colour for camouflage (background adaptation) or during circadian variation in irradiance levels. Two neuroendocrine systems, the eye/alpha‐melanocyte‐stimulating hormone (α‐MSH) and the pineal complex/melatonin circuits, regulate the process through their respective dispersion and aggregation of pigment granules (melanosomes) in skin melanophores. During development, Xenopus laevis tadpoles raised on a black background or in the dark perceive less light sensed by the eye and darken in response to increased α‐MSH secretion. As embryogenesis proceeds, the pineal complex/melatonin circuit becomes the dominant regulator in the dark and induces lightening of the skin of larvae. The eye/α‐MSH circuit continues to mediate darkening of embryos on a black background, but we propose the circuit is shut down in complete darkness in part by melatonin acting on receptors expressed by pituitary cells to inhibit the expression of pomc, the precursor of α‐MSH.  相似文献   

5.
Non-visual photoreception in mammals is primarily mediated by two splice variants that derive from a single melanopsin (OPN4M) gene, whose expression is restricted to a subset of retinal ganglion cells. Physiologically, this sensory system regulates the photoentrainment of many biological rhythms, such as sleep via the melatonin endocrine system and pupil constriction. By contrast, melanopsin exists as two distinct lineages in non-mammals, opn4m and opn4x, and is broadly expressed in a wide range of tissue types, including the eye, brain, pineal gland and skin. Despite these findings, the evolution and function of melanopsin in early vertebrates are largely unknown. We, therefore, investigated the complement of opn4 classes present in the genome of a model deep-sea cartilaginous species, the elephant shark (Callorhinchus milii), as a representative vertebrate that resides at the base of the gnathostome (jawed vertebrate) lineage. We reveal that three melanopsin genes, opn4m1, opn4m2 and opn4x, are expressed in multiple tissues of the elephant shark. The two opn4m genes are likely to have arisen as a result of a lineage-specific duplication, whereas “long” and “short” splice variants are generated from a single opn4x gene. By using a heterologous expression system, we suggest that these genes encode functional photopigments that exhibit both “invertebrate-like” bistable and classical “vertebrate-like” monostable biochemical characteristics. We discuss the evolution and function of these melanopsin pigments within the context of the diverse photic and ecological environments inhabited by this chimaerid holocephalan, as well as the origin of non-visual sensory systems in early vertebrates.  相似文献   

6.
Oncidium ‘Gower Ramsey’ (Onc. GR) is a popular cut flower, but its colour is limited to bright yellow. The β‐ring carotene hydroxylase (BCH2) gene is involved in carotenoid biogenesis for pigment formation. However, the role of BCH2 in Onc. GR is poorly understood. Here, we investigated the functions of three BCH2 genes, BCH‐A2, BCH‐B2 and BCH‐C2 isolated from Onc. GR, to analyse their roles in flower colour. RT‐PCR expression profiling suggested that BCH2 was mainly expressed in flowers. The expression of BCH‐B2 remained constant while that of BCH‐A2 gradually decreased during flower development. Using Agrobacterium tumefaciens to introduce BCH2 RNA interference (RNAi), we created transgenic Oncidium plants with down‐regulated BCH expression. In the transgenic plants, flower colour changed from the bright yellow of the wild type to light and white‐yellow. BCH‐A2 and BCH‐B2 expression levels were significantly reduced in the transgenic flower lips, which make up the major portion of the Oncidium flower. Sectional magnification of the flower lip showed that the amount of pigmentation in the papillate cells of the adaxial epidermis was proportional to the intensity of yellow colouration. HPLC analyses of the carotenoid composition of the transgenic flowers suggested major reductions in neoxanthin and violaxanthin. In conclusion, BCH2 expression regulated the accumulation of yellow pigments in the Oncidium flower, and the down‐regulation of BCH‐A2 and BCH‐B2 changed the flower colour from bright yellow to light and white‐yellow.  相似文献   

7.
Frog melanophores rapidly change colour by dispersion or aggregation of melanosomes. A long‐term colour change exists where melanosomes are released from melanophores and transferred to surrounding skin cells. No in vitro model for pigment transfer exists for lower vertebrates. Frog melanophores of different morphology exist both in epidermis where keratinocytes are present and in dermis where fibroblasts dominate. We have examined whether release and transfer of melanosomes can be studied in a melanophore‐fibroblast co‐culture, as no frog keratinocyte cell line exists. Xenopus laevis melanophores are normally cultured in conditioned medium from fibroblasts and fibroblast‐derived factors may be important for melanophore morphology. Melanin was exocytosed as membrane‐enclosed melanosomes in a process that was upregulated by α‐melanocyte‐stimulating hormone (α‐MSH), and melanosomes where taken up by fibroblasts. Melanosome membrane‐proteins seemed to be of importance, as the cluster‐like uptake pattern of pigment granules was distinct from that of latex beads. In vivo results confirmed the ability of dermal fibroblasts to engulf melanosomes. Our results show that cultured frog melanophores can not only be used for studies of rapid colour change, but also as a model system for long‐term colour changes and for studies of factors that affect pigmentation.  相似文献   

8.
We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis ‘Vivien’ and ‘Purple Star’ under purpose‐built LED arrays yielding c. 200 µmol m?2 s?1 at plant height for 14 h per day and 24/18°C day/night temperature, respectively, from January to April 2013. The light treatments were (1) 40% blue in 60% red (40% B/R), (2) 0% blue in 100% red (0% B/R) and (3) white LEDs with 32% blue in white (32% B/W, control), with background daylight under shade screens. The plants were harvested twice for leaf growth and pigmentation. There was no clear pattern in the spectral effect on growth since the order of leaf size differed between harvests in March and April. Fv/Fm was in the range of 0.52–0.72, but overall slightly higher in the control, which indicated a permanent downregulation of PSII in the colored treatments. The fluorescence quenching showed no acclimation to color in ‘Purple Star’, while ‘Vivien’ had lower ETR and higher NPQ in the 40% B/R, resembling low light acclimation. The pigmentation showed corresponding spectral response with increasing concentration of lutein while increasing the fraction of blue light, which increased the light absorption in the green/yellow part of the spectrum. The permanent downregulation of PSII moved a substantial part of the thermal dissipation from the light regulated NPQ to non‐regulated energy losses estimated by ΦNPQ and ΦNO and the difference found in the balance between ΦPSII and ΦNPQ in ‘Vivien’ disappeared when ΦNO was included in the thermal dissipation.  相似文献   

9.
MicroRNAs are known to be the important regulators of skin physiology and considered as new therapeutic targets to treat skin diseases. In this study, miR‐125b was identified as a potent regulator of steady‐state melanogenesis. We found that the expression of miR‐125b was inversely related to pigment levels. A miR‐125b mimic decreased the expression of pigmentation‐related gene and melanin content, implying that miR‐125b functions to decrease pigmentation. Moreover, we observed that the reduction in miR‐125b expression in pigmented cells was at least partially due to the hypermethylation of the MIR125B‐1 promoter, and miR‐125b expression was regulated by intracellular cAMP levels.  相似文献   

10.
Inbreeding of the sexualized planarian, Dugesia ryukyuensis, produces eye‐defective worms, menashi, in the F1 population. To study the effects of this mutation on the eye, we observed the eye‐region of menashi using electron microscopy and compared it with the regenerating eye in wild‐type worms. The intact eye of wild‐type planarians consisted of a few pigment cells and a number of visual cells. Pigment cells containing spherically‐shaped electron‐dense melanosomes contacted each other and enclosed rhabdomes of visual cells. Rhabdomes had numerous tubular microvilli extending radially and touching the pigment cells. However, in menashi, various lengths of tubular microvilli were irregularly distributed near the pigment cells, which contained numerous electron‐lucent premelanosomes, and no adhesive structures were found between the pigment cells. The premelanosomes of menashi were equal in size to those seen after 2 days of regeneration in wild‐type planarians and were similar in maturation to those found after 3 days of regeneration in wild‐type planarian. These results suggest that menashi is defective in the mechanism(s) of developing pigment granules and constructing visual cells. These findings also suggest that pigment cells in menashi are defective in the mechanism(s) involved with cell adhesion.  相似文献   

11.
The aim of this study was to describe the ultrastructure and arrangement of pigment cells in the leopard gecko (Eublepharis macularius) skin to explain how wild‐type coloration is formed. The study also attempted to explain, on a morphological level, how skin colour changes occur. Samples of leopard gecko skin were collected from wild‐type coloration adult specimens. The morphology of pigmented cells was determined using light microscopy on haematoxylin and eosin (H&E) stained sections and in transmission electron microscopy. These studies indicate that skin of E. macularis contains xanthophores and melanophores but lacks iridophores and that this is probably related to nocturnal activity. The number and distribution of xanthophores and melanophores determines the skin colour and pigmentation pattern. The colour changes depend on the arrangement of characteristic protrusions of melanophores and the degree of filling them with melanosomes.  相似文献   

12.
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent epidemiological studies suggest that echinacoside (ECH), a phenylethanoid glycoside found in Cistanche deserticola, has a protective effect against the development of PD. However, the detailed mechanisms of how ECH suppresses neuronal death have not been fully elucidated. In this study, we confirmed that ECH protects nigrostriatal neurons against 6‐hydroxydopamine (6‐OHDA)‐induced endoplasmic reticulum stress (ERS) in vivo and in vitro. ECH rescued cell viability in damaged cells and decreased 6‐OHDA‐induced reactive oxygen species accumulation in vitro. It also rescued tyrosine hydroxylase and dopamine transporter expression in the striatum, and decreased α‐synuclein aggregation following 6‐OHDA treatment in vivo. The validated mechanism of ECH activity was the reduction in the 6‐OHDA‐induced accumulation of seipin (Berardinelli–Seip congenital lipodystrophy 2). Seipin has been shown to be a key molecule related to motor neuron disease and was tightly associated with ERS in a series of in vivo studies. ECH attenuated seipinopathy by promoting seipin degradation via ubiquitination. ERS was relieved by ECH through the Grp94/Bip‐ATF4‐CHOP signal pathway.  相似文献   

13.
MITF, a gene that is mutated in familial melanoma and Waardenburg syndrome, encodes multiple isoforms expressed from alternative promoters that share common coding exons but have unique amino termini. It is not completely understood how these isoforms influence pigmentation in different tissues and how the expression of these independent isoforms of MITF is regulated. Here, we show that melanocytes express two isoforms of MITF, MITF‐A and MITF‐M. The expression of MITF‐A is partially regulated by a newly identified retinoid enhancer element located upstream of the MITF‐A promoter. Mitf‐A knockout mice have only subtle changes in melanin accumulation in the hair and reduced Tyr expression in the eye. In contrast, Mitf‐M‐null mice have enlarged kidneys, lack neural crest‐derived melanocytes in the skin, choroid, and iris stroma, yet maintain pigmentation within the retinal pigment epithelium and iris pigment epithelium of the eye. Taken together, these studies identify a critical role for MITF‐M in melanocytes, a minor role for MITF‐A in regulating pigmentation in the hair and Tyr expression in the eye, and a novel role for MITF‐M in size control of the kidney.  相似文献   

14.
The melanocortin 1 receptor (MC1R) is the central melanocortin receptor involved in vertebrate pigmentation. Mutations in this gene cause variations in coat coloration in amniotes. Additionally, in mammals MC1R is the main receptor for agouti‐signaling protein (ASIP), making it the critical receptor for the establishment of dorsal‐ventral countershading. In fish, Mc1r is also involved in pigmentation, but it has been almost exclusively studied in relation to melanosome dispersion activity and as a putative genetic factor involved in dark/light adaptation. However, its role as the crucial component for the Asip1‐dependent control of dorsal‐ventral pigmentation remains unexplored. Using CRISPR/Cas9, we created mc1r homozygous knockout zebrafish and found that loss‐of‐function of mc1r causes a reduction of countershading and a general paling of the animals. We find ectopic development of melanophores and xanthophores, accompanied by a decrease in iridophore numbers in the ventral region of mc1r mutants. We also reveal subtle differences in the role of mc1r in repressing pigment cell development between the skin and scale niches in ventral regions.  相似文献   

15.
Melanopsin is a photosensitive cell protein involved in regulating circadian rhythms and other non-visual responses to light. The melanopsin gene family is represented by two paralogs, OPN4x and OPN4m, which originated through gene duplication early in the emergence of vertebrates. Here we studied the melanopsin gene family using an integrated gene/protein evolutionary approach, which revealed that the rhabdomeric urbilaterian ancestor had the same amino acid patterns (DRY motif and the Y and E conterions) as extant vertebrate species, suggesting that the mechanism for light detection and regulation is similar to rhabdomeric rhodopsins. Both OPN4m and OPN4x paralogs are found in vertebrate genomic paralogons, suggesting that they diverged following this duplication event about 600 million years ago, when the complex eye emerged in the vertebrate ancestor. Melanopsins generally evolved under negative selection (ω = 0.171) with some minor episodes of positive selection (proportion of sites = 25%) and functional divergence (θI = 0.349 and θII = 0.126). The OPN4m and OPN4x melanopsin paralogs show evidence of spectral divergence at sites likely involved in melanopsin light absorbance (200F, 273S and 276A). Also, following the teleost lineage-specific whole genome duplication (3R) that prompted the teleost fish radiation, type I divergence (θI = 0.181) and positive selection (affecting 11% of sites) contributed to amino acid variability that we related with the photo-activation stability of melanopsin. The melanopsin intracellular regions had unexpectedly high variability in their coupling specificity of G-proteins and we propose that Gq/11 and Gi/o are the two G-proteins most-likely to mediate the melanopsin phototransduction pathway. The selection signatures were mainly observed on retinal-related sites and the third and second intracellular loops, demonstrating the physiological plasticity of the melanopsin protein group. Our results provide new insights on the phototransduction process and additional tools for disentangling and understanding the links between melanopsin gene evolution and the specializations observed in vertebrates, especially in teleost fish.  相似文献   

16.
ZPR1 proteins belong to the C4‐type of zinc finger coordinators known in animal cells to interact with other proteins and participate in cell growth and proliferation. In contrast, the current knowledge regarding plant ZPR1 proteins is very scarce. Here, we identify a novel potato nuclear factor belonging to this family and named StZPR1. StZPR1 is specifically expressed in photosynthetic organs during the light period, and the ZPR1 protein is located in the nuclear chromatin fraction. From modelling and experimental analyses, we reveal the StZPR1 ability to bind the circadian DNA cis motif ‘CAACAGCATC’, named CIRC and present in the promoter of the clock‐controlled double B‐box StBBX24 gene, the expression of which peaks in the middle of the day. We found that transgenic lines silenced for StZPR1 expression still display a 24 h period for the oscillation of StBBX24 expression but delayed by 4 h towards the night. Importantly, other BBX genes exhibit altered circadian regulation in these lines. Our data demonstrate that StZPR1 allows fitting of the StBBX24 circadian rhythm to the light period and provide evidence that ZPR1 is a novel clock‐associated protein in plants necessary for the accurate rhythmic expression of specific circadian‐regulated genes.  相似文献   

17.
18.
Teleost fishes have evolved a unique complexity and diversity of pigmentation and colour patterning that is unmatched among vertebrates. Teleost colouration is mediated by five different major types of neural‐crest derived pigment cells, while tetrapods have a smaller repertoire of such chromatophores. The genetic basis of teleost colouration has been mainly uncovered by the cloning of pigmentation genes in mutants of zebrafish Danio rerio and medaka Oryzias latipes. Many of these teleost pigmentation genes were already known as key players in mammalian pigmentation, suggesting partial conservation of the corresponding developmental programme among vertebrates. Strikingly, teleost fishes have additional copies of many pigmentation genes compared with tetrapods, mainly as a result of a whole‐genome duplication that occurred 320–350 million years ago at the base of the teleost lineage, the so‐called fish‐specific genome duplication. Furthermore, teleosts have retained several duplicated pigmentation genes from earlier rounds of genome duplication in the vertebrate lineage, which were lost in other vertebrate groups. It was hypothesized that divergent evolution of such duplicated genes may have played an important role in pigmentation diversity and complexity in teleost fishes, which therefore not only provide important insights into the evolution of the vertebrate pigmentary system but also allow us to study the significance of genome duplications for vertebrate biodiversity.  相似文献   

19.
20.
The neuropeptide pigment‐dispersing factor (PDF) is important for the generation and entrainment of circadian rhythms in the fruitfly Drosophila melanogaster. Recently two pdf homologs, pdf‐1 and pdf‐2, and a PDF receptor, pdfr‐1, have been found in Caenorhabditis elegans and have been implicated in locomotor activity. In this work, we have studied the role of the PDF neuropeptide in the circadian system of C. elegans and found that both pdf‐1 and pdf‐2 mutants affect the normal locomotor activity outputs. In particular, loss of pdf‐1 induced circadian arrhythmicity under both light–dark (LD) and constant dark (DD) conditions. These defects can be rescued by a genomic copy of the pdf‐1 locus. Our results indicate that PDF‐1 is involved in rhythm generation and in the synchronization to LD cycles, as rhythmic patterns of activity rapidly disappear when pdf‐1 mutants are recorded under both entrained and free‐running conditions. The role of PDF‐2 and the PDF receptors is probably more complex and involves the interaction between the two pdf paralogues found in the nematode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号