首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitors targeting the mitogen‐activated protein kinase (MAPK) pathway and immune checkpoint molecules have dramatically improved the survival of patients with BRAFV600‐mutant melanoma. For BRAF/RAS wild‐type (WT) melanoma patients, however, immune checkpoint inhibitors remain the only effective therapeutic option with 40% of patients responding to PD‐1 inhibition. In the present study, a large panel of 10 BRAFV600‐mutant and 13 BRAF/RAS WT melanoma cell lines was analyzed to examine MAPK dependency and explore the potential utility of MAPK inhibitors in this melanoma subtype. We now show that the majority of BRAF/RAS WT melanoma cell lines (8/13) display some degree of sensitivity to trametinib treatment and resistance to trametinib in this melanoma subtype is associated with, but not mediated by NF1 suppression. Although knockdown of NF1 stimulates RAS and CRAF activity, the activation of CRAF by NF1 knockdown is limited by ERK‐dependent feedback in BRAF‐mutant cells, but not in BRAF/RAS WT melanoma cells. Thus, NF1 is not a dominant regulator of MAPK signaling in BRAF/RAS WT melanoma, and co‐targeting multiple MAP kinase nodes provides a therapeutic opportunity for this melanoma subtype.  相似文献   

2.
Malignant melanomas are amongst the most aggressive cancers. BRAF Inhibitors have exhibited therapeutic effects against BRAF‐mutant melanoma. In continuation of our earlier studies on anti‐melanoma agents based on 1H‐pyrazole skeleton, two sets of novel compounds that include 1H‐pyrazole‐4‐amines FA 1 – FA13 and corresponding urea derivatives FN 1 – FN13 have been synthesized and evaluated for their BRAFV600E inhibitory and antiproliferation activities. Compound FN 10 displayed the most potent biological activity against BRAFV600E (IC50 = 0.066 μm ) and the A375 human melanoma cell line (GI50 = 0.81 μm ), which was comparable to the positive control vemurafenib, and more potent than our previously reported 1H‐pyrazole‐3‐amines and their urea derivatives. The results of SAR studies and molecular docking can guide further optimization and may help to improve potency of these pyrazole‐based anti‐melanoma agents.  相似文献   

3.
BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole‐exome sequencing of drug‐resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome‐wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N‐terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance‐conferring second‐site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF‐PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK‐activating, PLX4032‐resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032‐resistant melanoma cells are sensitive to novel, next‐generation BRAF inhibitors, especially the ‘paradox‐blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF‐mutations.  相似文献   

4.
Drug resistance is a major obstacle in the targeted therapy of melanoma using BRAF/MEK inhibitors. This study was to identify BRAF V600E-associated oncogenic pathways that predict resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors. We took in silico approaches to analyze the activities of 24 cancer-related pathways in melanoma cells and identify those whose activation was associated with BRAF V600E and used the support vector machine (SVM) algorithm to predict the resistance of BRAF-mutated melanoma cells to BRAF/MEK inhibitors. We then experimentally confirmed the in silico findings. In a microarray gene expression dataset of 63 melanoma cell lines, we found that activation of multiple oncogenic pathways preferentially occurred in BRAF-mutated melanoma cells. This finding was reproduced in 5 additional independent melanoma datasets. Further analysis of 46 melanoma cell lines that harbored BRAF mutation showed that 7 pathways, including TNFα, EGFR, IFNα, hypoxia, IFNγ, STAT3, and MYC, were significantly differently expressed in AZD6244-resistant compared with responsive melanoma cells. A SVM classifier built on this 7-pathway activation pattern correctly predicted the response of 10 BRAF-mutated melanoma cell lines to the MEK inhibitor AZD6244 in our experiments. We experimentally showed that TNFα, EGFR, IFNα, and IFNγ pathway activities were also upregulated in melanoma cell A375 compared with its sub-line DRO, while DRO was much more sensitive to AZD6244 than A375. In conclusion, we have identified specific oncogenic pathways preferentially activated in BRAF-mutated melanoma cells and a pathway pattern that predicts resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors, providing novel clinical implications for melanoma therapy.  相似文献   

5.
Inhibition of the mitogen‐activated protein kinase (MAPK) pathway is a major advance in the treatment of metastatic melanoma. However, its therapeutic success is limited by the rapid emergence of drug resistance. The insulin‐like growth factor‐1 receptor (IGF‐1R) is overexpressed in melanomas developing resistance toward the BRAFV600 inhibitor vemurafenib. Here, we show that hyperactivation of BRAF enhances IGF‐1R expression. In addition, the phosphatase activity of PTEN as well as heterocellular contact to stromal cells increases IGF‐1R expression in melanoma cells and enhances resistance to vemurafenib. Interestingly, PTEN‐negative melanoma cells escape IGF‐1R blockade by decreased expression of the receptor, implicating that only in melanoma patients with PTEN‐positive tumors treatment with IGF‐1R inhibitors would be a suitable strategy to combat therapy resistance. Our data emphasize the crosstalk and therapeutic relevance of microenvironmental and tumor cell‐autonomous mechanisms in regulating IGF‐1R expression and by this sensitivity toward targeted therapies.  相似文献   

6.
Treatment of BRAF mutant melanomas with specific BRAF inhibitors leads to tumor remission. However, most patients eventually relapse due to drug resistance. Therefore, we designed an integrated strategy using (phospho)proteomic and functional genomic platforms to identify drug targets whose inhibition sensitizes melanoma cells to BRAF inhibition. We found many proteins to be induced upon PLX4720 (BRAF inhibitor) treatment that are known to be involved in BRAF inhibitor resistance, including FOXD3 and ErbB3. Several proteins were down‐regulated, including Rnd3, a negative regulator of ROCK1 kinase. For our genomic approach, we performed two parallel shRNA screens using a kinome library to identify genes whose inhibition sensitizes to BRAF or ERK inhibitor treatment. By integrating our functional genomic and (phospho)proteomic data, we identified ROCK1 as a potential drug target for BRAF mutant melanoma. ROCK1 silencing increased melanoma cell elimination when combined with BRAF or ERK inhibitor treatment. Translating this to a preclinical setting, a ROCK inhibitor showed augmented melanoma cell death upon BRAF or ERK inhibition in vitro. These data merit exploration of ROCK1 as a target in combination with current BRAF mutant melanoma therapies.  相似文献   

7.
The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes.  相似文献   

8.
Due to the rising incidence and lack of effective treatments, malignant melanoma is the most dangerous form of skin cancer, so that new treatment strategies are urgently needed. Several recent developments indicate that the V600E mutant BRAF (BRAFV600E) is a validated target for antimelanoma‐drug development. Based on in silico screening results, a series of novel pyrazole derivatives has been designed, synthesized, and evaluated in vitro for their inhibitory activities against BRAFV600E melanoma cells. Compound 3d exhibited the most potent inhibitory activity with an IC50 value of 0.63 μM for BRAFV600E and a GI50 value of 0.61 μM for mutant BRAF‐dependent cells. Furthermore, the QSAR modeling and the docking simulation of inhibitor analogs provide important pharmacophore clues for further structural optimization.  相似文献   

9.
Melanoma patients with BRAFV600Emutant tumors display striking responses to BRAF inhibitors (BRAFi); however, almost all invariably relapse with drug‐resistant disease. Here, we report that microRNA‐125a (miR‐125a) expression is upregulated in human melanoma cells and patient tissues upon acquisition of BRAFi resistance. We show that miR‐125a induction confers resistance to BRAFV600E melanoma cells to BRAFi by directly suppressing pro‐apoptotic components of the intrinsic apoptosis pathway, including BAK1 and MLK3. Apoptotic suppression and prolonged survival favor reactivation of the MAPK and AKT pathways by drug‐resistant melanoma cells. We demonstrate that miR‐125a inhibition suppresses the emergence of resistance to BRAFi and, in a subset of resistant melanoma cell lines, leads to partial drug resensitization. Finally, we show that miR‐125a upregulation is mediated by TGFβ signaling. In conclusion, the identification of this novel role for miR‐125a in BRAFi resistance exposes clinically relevant mechanisms of melanoma cell survival that can be exploited therapeutically.  相似文献   

10.
11.
The incidence of malignant melanoma has increased over the past two decades. A combined BRAF/MEK inhibitor regimen has been shown to lead to prolonged survival and progression‐free survival in patients with metastatic BRAF V600‐mutant melanoma. Different nephrotoxic effects have been described, among them hyponatremia. The goal of the present narrative review was to understand the pathophysiological mechanisms driving hyponatremia when using selective BRAF inhibitors and/or MEK inhibitors in order to propose potential strategies to prevent or to treat this side effect. Several mechanisms of kidney injury have been suggested including changes in glomerular and tubular function. However, the precise mechanisms of hyponatremia remain unknown. Our hypothesis is that BRAF/MEK inhibitors lead to hyponatremia and water retention (so‐called dilution hyponatremia) by activating aquaporin 2 (AQP2) trafficking from its intracellular compartment to the luminal cell membrane, and by activating ENaC channel. Therefore, we recommend treating the hyponatremia related to BRAF/MEK inhibitors with restriction of fluid intake.  相似文献   

12.
The MEK inhibitor MEK162 is the first targeted therapy agent with clinical activity in patients whose melanomas harbor NRAS mutations; however, median PFS is 3.7 months, suggesting the rapid onset of resistance in the majority of patients. Here, we show that treatment of NRAS‐mutant melanoma cell lines with the MEK inhibitors AZD6244 or trametinib resulted in a rebound activation of phospho‐ERK (pERK). Functionally, the recovery of signaling was associated with the maintenance of cyclin‐D1 expression and therapeutic escape. The combination of a MEK inhibitor with an ERK inhibitor suppressed the recovery of cyclin‐D1 expression and was associated with a significant enhancement of apoptosis and the abrogation of clonal outgrowth. The MEK/ERK combination strategy induced greater levels of apoptosis compared with dual MEK/CDK4 or MEK/PI3K inhibition across a panel of cell lines. These data provide the rationale for further investigation of vertically co‐targeting the MAPK pathway as a potential treatment option for NRAS‐mutant melanoma patients.  相似文献   

13.
Vemurafenib and dabrafenib block MEK‐ERK1/2 signaling and cause tumor regression in the majority of advanced‐stage BRAFV600E melanoma patients; however, acquired resistance and paradoxical signaling have driven efforts for more potent and selective RAF inhibitors. Next‐generation RAF inhibitors, such as PLX7904 (PB04), effectively inhibit RAF signaling in BRAFV600E melanoma cells without paradoxical effects in wild‐type cells. Furthermore, PLX7904 blocks the growth of vemurafenib‐resistant BRAFV600E cells that express mutant NRAS. Acquired resistance to vemurafenib and dabrafenib is also frequently driven by expression of mutation BRAF splice variants; thus, we tested the effects of PLX7904 and its clinical analog, PLX8394 (PB03), in BRAFV600E splice variant‐mediated vemurafenib‐resistant cells. We show that paradox‐breaker RAF inhibitors potently block MEK‐ERK1/2 signaling, G1/S cell cycle events, survival and growth of vemurafenib/PLX4720‐resistant cells harboring distinct BRAFV600E splice variants. These data support the further investigation of paradox‐breaker RAF inhibitors as a second‐line treatment option for patients failing on vemurafenib or dabrafenib.  相似文献   

14.
Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAFV600E‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAFV600E‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.  相似文献   

15.

Background

The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAFV600 mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway.

Methodology/Principal Findings

The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance.

Conclusions/Significance

Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors.  相似文献   

16.
Past studies have shown that histone deacetylase (HDAC) and mutant BRAF (v-Raf murine sarcoma viral oncogene homolog B1) inhibitors synergistically kill melanoma cells with activating mutations in BRAF. However, the mechanism(s) involved remains less understood. Here, we report that combinations of HDAC and BRAF inhibitors kill BRAFV600E melanoma cells by induction of necrosis. Cotreatment with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) or panobinostat (LBH589) and the BRAF inhibitor PLX4720 activated the caspase cascade, but caspases appeared dispensable for killing, in that inhibition of caspases did not invariably block induction of cell death. The majority of dying cells acquired propidium iodide positivity instantly when they became positive for Annexin V, suggesting induction of necrosis. This was supported by caspase-independent release of high-mobility group protein B1, and further consolidated by rupture of the plasma membrane and loss of nuclear and cytoplasmic contents, as manifested by transmission electron microscopic analysis. Of note, neither the necrosis inhibitor necrostatin-1 nor the small interference RNA (siRNA) knockdown of receptor-interacting protein kinase 3 (RIPK3) inhibited cell death, suggesting that RIPK1 and RIPK3 do not contribute to induction of necrosis by combinations of HDAC and BRAF inhibitors in BRAFV600E melanoma cells. Significantly, SAHA and the clinically available BRAF inhibitor vemurafenib cooperatively inhibited BRAFV600E melanoma xenograft growth in a mouse model even when caspase-3 was inhibited. Taken together, these results indicate that cotreatment with HDAC and BRAF inhibitors can bypass canonical cell death pathways to kill melanoma cells, which may be of therapeutic advantage in the treatment of melanoma.  相似文献   

17.
18.
BRAF is the most prevalent oncogene and an important therapeutic target in melanoma. In some cancers, BRAF is activated by rearrangements that fuse its kinase domain to 5′ partner genes. We examined 848 comparative genomic hybridization profiles of melanocytic tumors and found copy number transitions within BRAF in 10 tumors, of which six could be further characterized by sequencing. In all, the BRAF kinase domain was fused in‐frame to six N‐terminal partners. No other mutations were identified in melanoma oncogenes. One of the seven melanoma cell lines without known oncogenic mutations harbored a similar BRAF fusion, which constitutively activated the MAP kinase pathway. Sorafenib, but not vemurafenib, could block MAP kinase pathway activation and proliferation of the cell line at clinically relevant concentrations, whereas BRAFV600E mutant melanoma cell lines were significantly more sensitive to vemurafenib. The patient from whom the cell line was derived showed a durable clinical response to sorafenib.  相似文献   

19.
The limitations of revolutionary new mutation-specific inhibitors of BRAFV600E include the universal recurrence seen in melanoma patients treated with this novel class of drugs. Recently, our lab showed that simultaneous activation of the Wnt/β-catenin signaling pathway and targeted inhibition of BRAFV600E by PLX4720 synergistically induces apoptosis across a spectrum of BRAFV600E melanoma cell lines. As a follow-up to that study, treatment of BRAF-mutant and NRAS-mutant melanoma lines with WNT3A and the MEK inhibitor AZD6244 also induces apoptosis. The susceptibility of BRAF-mutant lines and NRAS-mutant lines to apoptosis correlates with negative regulation of Wnt/β-catenin signaling by ERK/MAPK signaling and dynamic decreases in abundance of the downstream scaffolding protein, AXIN1. Apoptosis-resistant NRAS-mutant lines can sensitize to AZD6244 by pretreatment with AXIN1 siRNA, similar to what we previously reported in BRAF-mutant cell lines. Taken together, these findings indicate that NRAS-mutant melanoma share with BRAF-mutant melanoma the potential to regulate apoptosis upon MEK inhibition through WNT3A and dynamic regulation of cellular AXIN1. Understanding the cellular context that makes melanoma cells susceptible to this combination treatment will contribute to the study and development of novel therapeutic combinations that may lead to more durable responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号