首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Winter frosts caused by radiative cooling were hypothesized to limit successful reintroduction of Hawaiian plants other than Acacia koa to alien‐dominated grasslands above 1700 m elevation. We determined, in the laboratory, the temperature at which irreversible tissue damage occurred to Metrosideros polymorpha leaves. We also conducted a field study of this species to determine if (1) leaf damage was correlated with sub‐zero leaf temperatures, (2) radiative cooling could be moderated by canopies of A. koa, and (3) low soil temperatures contributed to seedling damage. The last was evaluated by thermally buffering seedlings with water‐filled bladders placed at their base to keep roots warm, or by installing a radiation shield to reduce early morning transpiration when water uptake from cold soils would be least. Leaf temperatures were monitored between midnight and 7:00 a.m. using fine‐wire thermocouples, and leaf damage was recorded monthly. In the laboratory, supercooling protected leaves from mild sub‐zero temperatures; irreversible tissue damage occurred at about ?8°C. In the field, leaf damage was strongly correlated with degree‐hours below freezing. Unprotected seedlings suffered the greatest leaf damage. Those sheltered under A. koa trees rarely experienced temperatures below ?3°C, and damage was minimal. Shaded and thermally buffered seedlings suffered less damage than unprotected plants, probably due to elevated leaf temperatures rather than improved water relations. Using A. koa or artificial devices to reduce radiative cooling during winter nights should enhance establishment of M. polymorpha in high‐elevation rangeland.  相似文献   

2.
The striped flea beetle, Phyllotreta undulata Kutschera (Coleoptera: Chrysomelidae), is a pest of cruciferous crops. It overwinters as an adult. During winter in northern European countries, such as Estonia, it is subject to sometimes severe temperatures that may fluctuate daily, over the season, and between seasons. The objective of this study was to investigate factors that affect its cold hardiness. In a series of five experiments, the effects of food plant, starvation, and acclimatization on the beetles’ ability to supercool and survive exposure to sub‐zero temperatures was investigated. The supercooling points (SCP) of overwintered beetles field‐collected from white mustard and Indian mustard differed from those caught from white cabbage and oilseed rape, but these differences disappeared after a 4‐day period of starvation at room temperature, indicating that gut content probably influences the potential to supercool. The duration and temperature of acclimation affected SCP in overwintered beetles. The decrease in SCP was more rapid at 22 °C than at 0 °C, probably because of faster dehydration and gut evacuation at the higher temperature. Acclimation at 0 °C for a week increased the ability of overwintered beetles to survive sub‐zero temperatures, lowering both SCP and lower lethal temperature (LLT50). Some pre‐freeze mortality occurred; SCP and LLT50 were correlated but the latter was a constant 3 °C higher than the former. The SCP of field‐collected pre‐winter beetles decreased gradually during the autumn. It also decreased when field‐collected pre‐winter beetles were acclimated at 0 °C in the laboratory, attaining its lowest level after 18 days. Phyllotreta undulata is well‐adapted to unstable and sometimes severe winter conditions; its high potential to supercool enhances its cold hardiness and ability to survive short periods at sub‐zero temperatures although it cannot survive freezing of its body fluids.  相似文献   

3.
The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. The larvae live throughout winter in leaf petioles and stems. Winter temperatures might play an important role in survival during winter and hence population dynamics, yet to what degree is unknown. This study investigates the effect of exposure time, cold acclimation, and larval stage on survival at ?5 and ?10 °C. Exposure time at ?5 °C was 1, 2, 4, 8, 12, 16, and 20 days and 6, 12, 24, 36, 48, 72, 96, 120, and 144 h at ?10 °C. Mortality increased with increasing exposure time and was significantly lower for cold‐acclimated larvae. Estimated time until an expected mortality of 50% (LT50) and 90% (LT90) of larvae exposed to ?5 °C was 7.4 and 9.6 days (non‐acclimated) and 11.0 and 15.1 days (acclimated), respectively. Estimated LT50 for non‐acclimated and acclimated larvae exposed to ?10 °C was 32.6 and 70.5 h, respectively, and estimated LT90 66.8 and 132.2 h. Significant differences in mortality between larval stages were observed only at ?5 °C. When exposed to ?5 °C for 8 days, mortality of first and second instars was 81.2 and 51.3%, respectively. When exposed to ?10 °C for 2 days, mortality of first and second instars was 70.5 and 76.1%. Data on winter temperatures in Denmark from 1990 to 2013 showed that larvae were rarely exposed to a number of continuous days at ?5 or ?10 °C causing a potential larval mortality of 50–90%.  相似文献   

4.
The contributions of phenotypic plasticity to photosynthetic performance in winter (cv Musketeer, cv Norstar) and spring (cv SR4A, cv Katepwa) rye (Secale cereale) and wheat (Triticum aestivum) cultivars grown at either 20°C [non‐acclimated (NA)] or 5°C [cold acclimated (CA)] were assessed. The 22–40% increase in light‐saturated rates of CO2 assimilation in CA vs NA winter cereals were accounted for by phenotypic plasticity as indicated by the dwarf phenotype and increased specific leaf weight. However, phenotypic plasticity could not account for (1) the differential temperature sensitivity of CO2 assimilation and photosynthetic electron transport, (2) the increased efficiency and light‐saturated rates of photosynthetic electron transport or (3) the decreased light sensitivity of excitation pressure and non‐photochemical quenching between NA and NA winter cultivars. Cold acclimation decreased photosynthetic performance of spring relative to winter cultivars. However, the differences in photosynthetic performances between CA winter and spring cultivars were dependent upon the basis on which photosynthetic performance was expressed. Overexpression of BNCBF17 in Brassica napus generally decreased the low temperature sensitivity (Q10) of CO2 assimilation and photosynthetic electron transport even though the latter had not been exposed to low temperature. Photosynthetic performance in wild type compared to the BNCBF17‐overexpressing transgenic B. napus indicated that CBFs/DREBs regulate not only freezing tolerance but also govern plant architecture, leaf anatomy and photosynthetic performance. The apparent positive and negative effects of cold acclimation on photosynthetic performance are discussed in terms of the apparent costs and benefits of phenotypic plasticity, winter survival and reproductive fitness.  相似文献   

5.
Freezing and high temperature thresholds of photosystem 2 (PS2), ice formation and frost and heat damage were measured in leaves of evergreen subalpine plants under conditions of naturally low (winter) to high (summer) PS2 efficiencies (FV/FM). The temperature‐dependent change in basic Chl fluorescence (F0) (T‐F0) technique that is usually used to assess the high temperature threshold of PS2 in a new approach was applied to test freezing temperature thresholds of PS2. T‐F0 curves (+5 °C to ?10 °C at 2 K h?1) revealed a significant, sudden increase in F0 on extracellular ice formation (?4.0 or ?5.5 °C). The rise in F0 was recorded 0.3–0.6 K below ice nucleation (10–20 min later) and was produced by freeze dehydration of cells. The rise in F0 was not caused by frost damage, as during winter LT50 was lower than ?27 °C and not by formation of ice on the leaf surface. Hence, F0 measurements during freezing are a useful tool to distinguish between surface ice and extracellular ice inside the leaf tissue which cannot be differentiated by other ice‐detecting methods. PS2 efficiency significantly affected the shape of the high temperature T‐F0 curves (20–65 °C at 1 K min?1). Under FV/FM >0.6, two F0 maxima were recorded. The fast rise phase to the first F0 maximum corresponded with tissue heat damage (LT50: 46.9–54.3 °C). The second F0 maximum occurred at leaf temperatures between 55 and 60 °C. Under FV/FM <0.2 only, the second F0 maximum was detectable. Lack of awareness of the missing F0 maximum would lead to an overestimation of the PS2 high temperature threshold by >10 K; hence, under low FV/FM, it cannot be determined by the T‐F0 technique.  相似文献   

6.
Large numbers of European ash have died in Poland in all age classes during the last ten years. The characteristic symptom occurring on shoots of planted and self‐sown seedlings was bark necroses starting from the shoot apex, necrotic buds, or leaf and twig scars. The results showed that in the bud tissue of cold acclimated European ash extracellular and intracellular ice formation occurred at approximately ?9 and ?32°C, respectively. In deacclimated plants in spring water supercooling is limited by the heterogenous ice nucleation temperature and consequently the cold tolerance is ?9 to ?4°C for bud tissues and ?13 to ?9°C for shoots. Isolations of fungi were performed from dead buds and from necroses occurring on the main stem. Alternaria alternata, Fusarium lateritium and Phomopsis scobina were among the fungi occurring in both these organs at frequencies of more than 7%. Cylindrocarpon heteronemum, Diplodia mutila and Tubercularia vulgaris from necroses were only isolated in frequencies; 3.3, 1.2 and 5.4%, respectively. It seems likely that freezing injury is the inciting factor, which combined with fungal colonization manifests itself as fatal damage to European ash buds and shoots.  相似文献   

7.
G. Goldstein  F. Rada  A. Azocar 《Oecologia》1985,68(1):147-152
Summary Factors affecting supercooling capacity and cold hardiness were investigated in leaves of ten giant rosette species of the genus Espeletia (Compositae). These species grow along a 2,800–4,200 m elevation gradient in the Venezuelan Andes. In this high tropical environment, freezing frequently occurs every night, particularly above 3,300 m, but lasts for only a few hours. Supercooling capacty is linearly related to leaf water potential ( L ) in all species; however supercooling is more responsive to L changes in Espeletia species from high paramos. The rate of change in the species-specific supercooling point and the rate of change of average annual minimum temperature along the elevation and climatic gradient follow the same trend (approximately -0.6 K per 100 m elevation). At a given elevation, the expanded leaves of the different species tend to supercool 8–10 K below minimum air temperatures. Experimentally-induced freezing was accompanied by the formation of intracellular ice and tissue damage. The relative apoplastic water content (RAWC) of the leaves, which may influence the ice nucleation rate or the facility by which ice propagates, was determined by pressure-volume methods. Species from higher sites tend to exhibit lower RAWC (2%–7%) than species from lower sites (7%–36%). A causal relationship between supercooling capacity and RAWC is suggested. In the high tropical Andes, the temperature oxotherm plateau of Espeletia leaves seems to be sufficiently fow to avoid freezing.  相似文献   

8.
Freezing avoidance in Andean giant rosette plants   总被引:3,自引:1,他引:2  
Abstract Frost avoidance mechanisms were studied in Espeletia spicata and Espeletia timotensis, two Andean giant rosette species. The daily courses of soil, air and tissue temperatures were measured at a site at circa 4000 m. Only the leaves were exposed to subzero temperatures; the apical bud and stem pith tissues were insulated by surrounding tissues. The leaf tissues avoided freezing by supercooling rather than by undergoing active osmotic changes. The temperatures at which ice formed in the tissues (the supercooling points) coincided with injury temperatures indicating that Espeletia tissue does not tolerate any kind of ice formation. For insulated tissue (apical bud, stem pith, roots) the supercooling point was around - 5°C coinciding with the injury temperature. Supercooling points of about –13 to - 16°C were observed for leaves. These results contrast with those reported for Afroalpine giant rosettes which tolerate extracellular freezing. The significance of different adaptive responses of giant rosettes to similar cold tropical environments is discussed.  相似文献   

9.
Electron probe X-ray microanalysis was used to analyse the effects of sub-zero temperatures on K+ distribution in compartments within non-acclimated and cold acclimated rye (Secale cereale L. cv Voima) leaf cells and to evaluate membrane leakage of ions caused by freezing-injury. The specimens were rapidly frozen from growing temperatures and from two different sub-zero temperatures (LT50 and LT100) to which the leaves had already been slowly cooled. Measurements were made in the cytoplasm, vacuole and cell walls in freeze-substituted mesophyll cells. At ambient temperatures, the mean K+ concentration in the cytoplasm (100 mol m?3) differed significantly from that of the vacuole (49 mol m?3) in the non-acclimated (NA) cells, while in cold acclimated (A) cells, the concentrations were similar (109 vs 93 mol m?3, respectively). At LT50 temperatures, the K+ concentration in NA-cells decreased significantly in the cytoplasm (59 mol m?3) but increased in the cell walls. In the A-cells, on the other hand, the mean K+ concentration increased significantly (about three-fold) in all major compartments. At LT100 temperatures, K+ concentrations in the cytoplasm and cell walls decreased when compared with corresponding LT50 values in the A-cells but increased in the NA-cells. The increased potassium concentration in the cytoplasm of A-cells at LT50 temperature is compatible with the observed cell shrinkage and an absence of plasma membrane damage. The decreased potassium concentration in the cytoplasm of NA-cells at LT50 temperature is compatible with the slight cell shrinkage and suggests that the plasma membrane in these cells shows increased permeability due to freeze injury.  相似文献   

10.
Abstract The age‐dependent cold hardiness profile of Ostrinia nubilalis is compared between nondiapausing and diapausing larvae, as well as with field‐collected larvae. The results suggest that both cold tolerance and accumulation of cryoprotectants depends upon the age of O. nubilalis larva. Late fifth‐instar nondiapausing larvae are more cold tolerant than younger fifth‐instars because they show enhanced ability to withstand sub‐zero temperatures. No appreciable difference is observed between the experimental groups of diapausing larvae as far as their supercooling ability and tolerance at sub‐zero temperatures above the supercooling point. In general, both field‐collected and diapausing larvae are more cold tolerant than nondiapausing larvae, indicating a direct link between diapause and cold hardiness. The age of diapausing larvae affects the ability to accumulate glycerol. Glycerol levels of 45‐day‐old diapausing larvae are significantly higher (2.7‐fold) compared with 90‐day‐old diapausing larvae. Moreover, diapausing larvae display a five‐ to 13‐fold higher glycerol content compared with nondiapausing larvae. There is a trend for an age‐dependent cold hardiness profile in O. nubilalis and further tests that could demonstrate a causal relationship between age and cold tolerance are needed.  相似文献   

11.
We determined the cold (freezing) tolerance of five Spanish populations of the perennial shrub Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae), as the temperature at which 50 % of leaf electrolytes are released (LT50) using leaves of field-grown plants, obtained in two winters and one spring. The freezing tolerance was greater in winter and reflected the minimum temperatures at the original sites from which the populations were obtained. Tolerance in vitro was related to osmotic adjustment in the leaves; more negative osmotic potential values and more positive pressure potential values (MPa) were associated with greater tolerance. Tolerance and osmotic potential were not related to leaf cation contents but to leaf amino acids, soluble sugar and proline contents.  相似文献   

12.
The decrease in temperature with increasing elevation may determine the altitudinal tree distribution in different ways: affecting survival through freezing temperatures, by a negative carbon balance produced by lower photosynthetic rates, or by limiting growth activity. Here we assessed the relative importance of these direct and indirect effects of altitudinal decrease in temperature in determining the treeline in central Chile (33°S) dominated by Kageneckia angustifolia. We selected two altitudes (2000 and 2200 m a.s.l.) along the treeline ecotone. At each elevation, leaf non-structural carbohydrates (NSC) and gas exchange parameters were measured on five individuals during the growing season. We also determined the cold resistance of K.␣angustifolia, by measuring temperatures that cause 50% seedling mortality (LT50) and ice nucleation (IN). No differences in net photosynthesis were found between altitudes. Although no differences were detected on NSC concentration on a dry matter basis between 2000 and 2200 m, when NSC concentration was expressed on a leaf area basis, higher contents were found at the higher elevation. Thus, carbon sink limitations may occur at the K. angustifolia’s upper altitudinal limit. For seedlings derived from seeds collected at the 2200 m, LT50 of cold-acclimated and non-acclimated plants were −9.5 and −7 °C, respectively. However, temperatures as low as −10 °C can frequently occur at this altitude during the end of winter. Therefore, low temperature injury of seedlings seems also be involved in the treeline formation in this species. Hence, a confluence of global (carbon sink limitation) and regional (freezing tolerance) mechanisms explains the treeline formation in the Mediterranean-type climate zone of central Chile.  相似文献   

13.
Using cryo‐SEM with EDX fundamental structural and mechanical properties of the moss Ceratodon purpureus (Hedw.) Brid. were studied in relation to tolerance of freezing temperatures. In contrast to more complex plants, no ice accumulated within the moss during the freezing event. External ice induced desiccation with the response being a function of cell type; water‐filled hydroid cells cavitated and were embolized at ?4 °C while parenchyma cells of the inner cortex exhibited cytorrhysis, decreasing to ~20% of their original volume at a nadir temperature of ?20 °C. Chlorophyll fluorescence showed that these winter acclimated mosses displayed no evidence of damage after thawing from ?20 °C while GCMS showed that sugar concentrations were not sufficient to confer this level of freezing tolerance. In addition, differential scanning calorimetry showed internal ice nucleation occurred in hydrated moss at ~?12 °C while desiccated moss showed no evidence of freezing with lowering of nadir temperature to ?20 °C. Therefore the rapid dehydration of the moss provides an elegantly simple solution to the problem of freezing; remove that which freezes.  相似文献   

14.
It is not well understood what determines the degree of supercooling of apoplastic sap in trees, although it determines the number and duration of annual freeze–thaw cycles in a given environment. We studied the linkage between apoplastic ice nucleation temperature, tree water status, and conduit size. We used branches of 10 gymnosperms and 16 angiosperms collected from an arboretum in Helsinki (Finland) in winter and spring. Branches with lower relative water content froze at lower temperatures, and branch water content was lower in winter than in spring. A bench drying experiment with Picea abies confirmed that decreasing branch water potential decreases apoplastic ice nucleation temperature. The studied angiosperms froze on average 2.0 and 1.8°C closer to zero Celsius than the studied gymnosperms during winter and spring, respectively. This was caused by higher relative water content in angiosperms; when branches were saturated with water, apoplastic ice nucleation temperature of gymnosperms increased to slightly higher temperature than that of angiosperms. Apoplastic ice nucleation temperature in sampled branches was positively correlated with xylem conduit diameter as shown before, but saturating the branches removed the correlation. Decrease in ice nucleation temperature decreased the duration of freezing, which could have an effect on winter embolism formation via the time available for gas escape during ice propagation. The apoplastic ice nucleation temperature varied not only between branches but also within a branch between consecutive freeze–thaw cycles demonstrating the stochastic nature of ice nucleation.  相似文献   

15.
Abstract. Eretmocerus eremicus is a parasitoid wasp that is not native to Britain. It is a biological control agent of glasshouse whitefly and has recently been released under licence in Britain for the first time. This study assessed the effect of low temperature on the outdoor establishment potential of E. eremicus in Britain. The developmental threshold calculated by three linear methods was between 6.1° and 11.6 °C, with a degree‐day requirement per generation between 256.3 and 366.8° day?1. The supercooling points of non‐acclimated and acclimated larvae were similar (approximately ?25 °C). Non‐acclimated and acclimated larvae were subject to considerable pre‐freeze mortality, with lethal temperature (LTemp50) values of ?16.3 and ?21.3 °C, respectively. Lethal time experiments indicated a similar lack of cold tolerance with 50% mortality of both non‐acclimated and acclimated larvae after 7 days at ?5 °C, 10 days at 0 °C and 13 days at 5 °C. Field trials showed that neither non‐acclimated nor acclimated larvae survived longer than 1 month when exposed to naturally fluctuating winter temperatures. These results suggest that releasing E. eremicus into British greenhouses would pose minimal risk because typical British winter temperatures would be an effective barrier against establishment in the wild.  相似文献   

16.
When cooled at rapid rates to temperatures between −10 and −30°C, the incidence of intracellular ice formation was less in protoplasts enzymically isolated from cold acclimated leaves of rye (Secale cereale L. cv Puma) than that observed in protoplasts isolated from nonacclimated leaves. The extent of supercooling of the intracellular solution at any given temperature increased in both nonacclimated and acclimated protoplasts as the rate of cooling increased. There was no unique relationship between the extent of supercooling and the incidence of intracellular ice formation in either nonacclimated or acclimated protoplasts. In both nonacclimated and acclimated protoplasts, the extent of intracellular supercooling was similar under conditions that resulted in the greatest difference in the incidence of intracellular ice formation—cooling to −15 or −20°C at rates of 10 or 16°C/minute. Further, the hydraulic conductivity determined during freeze-induced dehydration at −5°C was similar for both nonacclimated and acclimated protoplasts. A major distinction between nonacclimated and acclimated protoplasts was the temperature at which nucleation occurred. In nonacclimated protoplasts, nucleation occurred over a relatively narrow temperature range with a median nucleation temperature of −15°C, whereas in acclimated protoplasts, nucleation occurred over a broader temperature range with a median nucleation temperature of −42°C. We conclude that the decreased incidence of intracellular ice formation in acclimated protoplasts is attributable to an increase in the stability of the plasma membrane which precludes nucleation of the supercooled intracellular solution and is not attributable to an increase in hydraulic conductivity of the plasma membrane which purportedly precludes supercooling of the intracellular solution.  相似文献   

17.
Seasonal variations in freezing tolerance, water content, water and osmotic potential, and levels of soluble sugars of leaves of field-grown Valencia orange (Citrus sinensis) trees were studied to determine the ability of citrus trees to cold acclimate under natural conditions. Controlled environmental studies of young potted citrus trees, spinach (Spinacia pleracea), and petunia (Petunia hybrids) were carried out to study the water relations during cold acclimation under less variable conditions. During the coolest weeks of the winter, leaf water content and osmotic potential of field-grown trees decreased about 20 to 25%, while soluble sugars increased by 100%. At the same time, freezing tolerance increased from lethal temperature for 50% (LT50) of −2.8 to −3.8°C. In contrast, citrus leaves cold acclimated at a constant 10°C in growth chambers were freezing tolerant to about −6°C. The calculated freezing induced cellular dehydration at the LT50 remained relatively constant for field-grown leaves throughout the year, but increased for leaves of plants cold acclimated at 10°C in a controlled environment. Spinach leaves cold acclimated at 5°C tolerated increased cellular dehydration compared to nonacclimated leaves. Cold acclimated petunia leaves increased in freezing tolerance by decreasing osmotic potential, but had no capacity to change cellular dehydration sensitivity. The result suggest that two cold acclimation mechanisms are involved in both citrus and spinach leaves and only one in petunia leaves. The common mechanism in all three species tested was a minor increase in tolerance (about −1°C) resulting from low temperature induced osmotic adjustment, and the second in citrus and spinach was a noncolligative mechanism that increased the cellular resistance to freeze hydration.  相似文献   

18.
  The effect of gut fluid ice nucleators and antifreeze proteins on maintenance of supercooling was explored in fire-colored beetle larvae, Dendroides canadensis, via seasonal monitoring of supercooling points, antifreeze protein activity and ice nucleator activity of gut fluid and/or larvae. During cold hardening in the field, freeze-avoiding larvae evacuated their guts and depressed larval supercooling points. Analysis of gut fluid indicated supercooling points and ice nucleator activity decreased, whereas antifreeze protein activity increased as winter approached. Suspensions of bacteria isolated from guts of feeding larvae collected in spring/summer had higher supercooling points than those from midwinter-collected non-feeding larvae, suggesting bacterial ice nucleators are removed from midwinter gut fluid. The ice nucleation active bacterium Pseudomonas fluorescens was isolated from gut fluid of feeding larvae but was absent in winter. When mixed with purified D.␣canadensis hemolymph antifreeze proteins (structurally similar and/or identical to those in gut fluid), the cumulative ice nucleus spectra of P. fluorescens suspensions were shifted to lower temperatures indicating an inhibitory effect on the bacteria's ice-nucleating phenotype. By extending larval supercooling capacity, both gut clearing and masking of bacterial ice nucleators by antifreeze proteins may contribute to overwintering survival in supercooled insects. Accepted: 8 August 1996  相似文献   

19.
Knaupp M  Mishra KB  Nedbal L  Heyer AG 《Planta》2011,234(3):477-486
A role of non-reducing sugars like sucrose and raffinose in the protection of plant cells against damage during freezing has been proposed for many species, but reports on physiological effects are conflicting. Non-aqueous fractionation of mesophyll cell compartments in Arabidopsis thaliana was used to show that sucrose and raffinose accumulate in plastids during low temperatures, pointing to a physiological role in protecting the photosynthetic apparatus. Comparing a previously described raffinose synthase (RS) mutant of A. thaliana with its corresponding wild type, accession Col-0, revealed that a lack of raffinose has no effect on electrolyte leakage from leaf cells after freeze–thaw cycles, supporting that raffinose is not essential for protecting the plasma membrane. However, in situ chlorophyll fluorescence showed that maximum quantum yield of PS II photochemistry (F v/F m) and other fluorescence parameters of cold acclimated leaves subjected to freeze–thaw cycles were significantly lower in the raffinose synthase mutant than in the corresponding wild type, indicating that raffinose is involved in stabilizing PS II of cold acclimated leaf cells against damage during freezing.  相似文献   

20.
Cold-resistance studies of marine invertebrates have concentrated on intertidal sedentary organisms, which are often subjected to subzero air temperatures in winter. Mobile rock pool inhabitants have been rarely studied because such habitats are thought to buffer environmental variation. However, it is not uncommon for small upper-shore rock pools (2 by 1 cm) to become completely frozen. Such supralittoral habitats are subject to extreme physicochemical fluctuations especially in salinity (0 to 300‰) and temperature (−1 to +32°C) due to evaporation and dilution. The dominant invertebrate in such habitats is the harpacticoid copepodTigriopus brevicornis.Aspects of the cryobiology ofT. brevicorniswere investigated using differential scanning calorimetry (DSC). Thermograms obtained from DSC allowed determinations of freeze-onset (supercooling point, SCP), melt-onset, and melt-peak (melting point, MP) temperatures, together with estimation of the proportion of water freezing in the samples. The effects of acclimation salinity, temperature, starvation, and reproductive state on these cryobiological parameters were investigated. Acclimation to increasing salinity depressed the SCP, with the highest salinity (70‰) producing the lowest SCP, melt-onset, and MP temperatures at −27.5, −15.2, and −9.5°C respectively. The highest acclimation temperature (20°C) produced the lowest SCP (−23.4°C). Starvation significantly increased the SCP, melt-onset, and MP temperatures in comparison to fed individuals acclimated to the same salinity. The presence of eggs or ovaries in individual copepods elevated the SCP compared to nongravid females and males. LT50studies showed that acclimation to high salinity improved the ability ofT. brevicornisto survive in frozen seawater. Seventy parts per thousand acclimated individuals had an LT50of 64.9 h compared with just 1.4 h for 5‰ acclimated individuals in frozen seawater at −5°C. The study shows that the cold-resistance capabilities ofT. brevicorniscan be affected by several different factors, and the link between the osmoconforming nature of this species and its cold resistance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号