首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Deposition of ammonium (NH4+) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4+ is well studied, little is known about how shoot‐supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin‐responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN‐FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1‐dependent auxin transport from shoot to root.  相似文献   

4.
5.
Auxin and abscisic acid (ABA) modulate numerous aspects of plant development together, mostly in opposite directions, suggesting that extensive crosstalk occurs between the signalling pathways of the two hormones. However, little is known about the nature of this crosstalk. We demonstrate that ROP‐interactive CRIB motif‐containing protein 1 (RIC1) is involved in the interaction between auxin‐ and ABA‐regulated root growth and lateral root formation. RIC1 expression is highly induced by both hormones, and expressed in the roots of young seedlings. Whereas auxin‐responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1 knockout, ABA‐responsive gene induction and the effect of ABA on seed germination, root growth and lateral root formation were potentiated. Thus, RIC1 positively regulates auxin responses, but negatively regulates ABA responses. Together, our results suggest that RIC1 is a component of the intricate signalling network that underlies auxin and ABA crosstalk.  相似文献   

6.
Auxin flow is important for different root developmental processes such as root formation, emergence, elongation and gravitropism. However, the detailed information about the mechanisms regulating the auxin flow is less well understood in rice. We characterized the auxin transport‐related mutants, Ospin‐formed2‐1 (Ospin2‐1) and Ospin2‐2, which exhibited curly root phenotypes and altered lateral root formation patterns in rice. The OsPIN2 gene encodes a member of the auxin efflux carrier proteins that possibly regulates the basipetal auxin flow from the root tip toward the root elongation zone. According to DR5‐driven GUS expression, there is an asymmetric auxin distribution in the mutants that corresponded with the asymmetric cell elongation pattern in the mutant root tip. Auxin transport inhibitor, N‐1‐naphthylphthalamic acid and Ospin2‐1 Osiaa13 double mutant rescued the curly root phenotype indicating that this phenotype results from a defect in proper auxin distribution. The typical curly root phenotype was not observed when Ospin2‐1 was grown in distilled water as an alternative to tap water, although higher auxin levels were found at the root tip region of the mutant than that of the wild‐type. Therefore, the lateral root formation zone in the mutant was shifted basipetally compared with the wild‐type. These results reflect that an altered auxin flow in the root tip region is responsible for root elongation growth and lateral root formation patterns in rice.  相似文献   

7.
Osmotic regulation of root system architecture   总被引:14,自引:0,他引:14  
Although root system architecture is known to be highly plastic and strongly affected by environmental conditions, we have little understanding of the underlying mechanisms controlling root system development. Here we demonstrate that the formation of a lateral root from a lateral root primordium is repressed as water availability is reduced. This osmotic-responsive regulatory mechanism requires abscisic acid (ABA) and a newly identified gene, LRD2. Mutant analysis also revealed interactions of ABA and LRD2 with auxin signaling. Surprisingly, further examination revealed that both ABA and LRD2 control root system architecture even in the absence of osmotic stress. This suggests that the same molecules that mediate responses to environmental cues can also be regulators of intrinsic developmental programs in the root system.  相似文献   

8.
Wu G  Lewis DR  Spalding EP 《The Plant cell》2007,19(6):1826-1837
Auxin affects the shape of root systems by influencing elongation and branching. Because multidrug resistance (MDR)-like ABC transporters participate in auxin transport, they may be expected to contribute to root system development. This reverse genetic study of Arabidopsis thaliana roots shows that MDR4-mediated basipetal auxin transport did not affect root elongation or branching. However, impaired acropetal auxin transport due to mutation of the MDR1 gene caused 21% of nascent lateral roots to arrest their growth and the remainder to elongate 50% more slowly than the wild type. Reporter gene analyses indicated a severe auxin deficit in the apex of mdr1 but not mdr4 lateral roots. The mdr1 deficit was explained by 40% less acropetal auxin transport within the mdr1 lateral roots. The slow elongation of mdr1 lateral roots was rescued by auxin and phenocopied in the wild type by an inhibitor of polar auxin transport. Confocal microscopy analysis of a functional green fluorescent protein-MDR1 translational fusion showed the protein to be auxin inducible and present in the tissues responsible for acropetal transport in the primary root. The protein also accumulated in lateral root primordia and later in the tissues responsible for acropetal transport within the lateral root, fully supporting the conclusion that auxin levels established by MDR1-dependent acropetal transport control lateral root growth rate to influence root system architecture.  相似文献   

9.
Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 microm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.  相似文献   

10.
Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild‐type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non‐hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane‐permeable auxin 1‐naphthalene acetic acid. Treatment with the auxin transport inhibitors 1‐naphthoxyacetic acid and N‐1‐naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species‐mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress.  相似文献   

11.
Ge L  Chen H  Jiang JF  Zhao Y  Xu ML  Xu YY  Tan KH  Xu ZH  Chong K 《Plant physiology》2004,135(3):1502-1513
There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1::GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1::GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature.  相似文献   

12.
Casein kinases are critical in cell division and differentiation across species. A rice cDNA fragment encoding a putative casein kinase I (CKI) was identified via cDNA macroarray under brassinosteroid (BR) treatment, and a 1939-bp full-length cDNA, OsCKI1, was isolated and found to encode a putative 463-aa protein. RT-PCR and Northern blot analysis indicated that OsCKI1 was constitutively expressed in various rice tissues and upregulated by treatments with BR and abscisic acid (ABA). Enzymatic assay of recombinant OsCKI1 proteins expressed in Escherichia coli showed that the protein was capable of phosphorylating casein. The physiological roles of OsCKI1 were studied through antisense transgenic approaches, and homozygous transgenic plants showed abnormal root development, including fewer lateral and adventitious roots, and shortened primary roots as a result of reduced cell elongation. Treatment of wild-type plants with CKI-7, a specific inhibitor of CKI, also confirmed these functions of OsCKI1. Interestingly, in transgenic and CKI-7-treated plants, exogenously supplied IAA could restore normal root development, and measurement of free IAA content in CKI-deficient primary and adventitious roots revealed altered auxin content, indicating that OsCKI1 is involved in auxin metabolism or that it may affect auxin levels. Transgenic plants were less sensitive than control plants to ABA or BR treatment during germination, suggesting that OsCKI1 may be involved in various hormone-signaling pathways. OsCKI1-GFP fusion studies revealed the localization of OsCKI1 to the nucleus, suggesting a possible involvement in regulation of gene expression. In OsCKI1-deficient plants, differential gene expression was investigated using cDNA chip technology, and results indicated that genes related to signal transduction and hormone metabolism were indeed with altered expression.  相似文献   

13.

Key message

Our results demonstrate that the flavonoids biosynthetic pathway can be effectively manipulated to confer enhanced plant root growth under water-stress conditions.

Abstract

Abscisic acid (ABA) is one of most important phytohormones. It functions in various processes during the plant lifecycle. Previous studies indicate that ABA has a negative effect on root growth and branching. Auxin is another key plant growth regulator that plays an essential role in plant growth and development. In contrast to ABA, auxin is a positive regulator of root growth and development at low concentrations. This study was performed to help understand whether flavonoids can suppress the effect of ABA on lateral root growth. The recessive TRANSPARENT TESTA GLABRA 1 (ttg1) mutant was characterized on ABA and sucrose treatments. It was determined that auxin mobilization could be altered by modifying flavonoids biosynthesis, which resulted in alterations of root architecture in response to ABA treatment. Moreover, transgenic TTG1-overexpression (TTG1-OX) seedlings exhibited enhanced root length and lateral root number compared to wild-type seedlings grown under normal or stress conditions. Genetic manipulation of the flavonoids biosynthetic pathway could therefore be employed successfully for the improvement of plant root systems by overcoming the inhibition of ABA and some abiotic stresses.  相似文献   

14.
Auxin signaling mediated by various auxin/indole‐3‐acetic acid (Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs) regulate lateral root (LR) development by controlling the expression of downstream genes. LATERAL ROOT PRIMORDIUM1 (LRP1), a member of the SHORT INTERNODES/STYLISH (SHI/STY) family, was identified as an auxin‐inducible gene. The precise developmental role and molecular regulation of LRP1 in root development remain to be understood. Here we show that LRP1 is expressed in all stages of LR development, besides the primary root. The expression of LRP1 is regulated by histone deacetylation in an auxin‐dependent manner. Our genetic interaction studies showed that LRP1 acts downstream of auxin responsive Aux/IAAs‐ARFs modules during LR development. We showed that auxin‐mediated induction of LRP1 is lost in emerging LRs of slr‐1 and arf7arf19 mutants roots. NPA treatment studies showed that LRP1 acts after LR founder cell specification and asymmetric division during LR development. Overexpression of LRP1 (LRP1 OE) showed an increased number of LR primordia (LRP) at stages I, IV and V, resulting in reduced emerged LR density, which suggests that it is involved in LRP development. Interestingly, LRP1‐induced expression of YUC4, which is involved in auxin biosynthesis, contributes to the increased accumulation of endogenous auxin in LRP1 OE roots. LRP1 interacts with SHI, STY1, SRS3, SRS6 and SRS7 proteins of the SHI/STY family, indicating their possible redundant role during root development. Our results suggested that auxin and histone deacetylation affect LRP1 expression and it acts downstream of LR forming auxin response modules to negatively regulate LRP development by modulating auxin homeostasis in Arabidopsis thaliana.  相似文献   

15.
Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress.  相似文献   

16.
Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.  相似文献   

17.
Plant grafting is an important technique for horticultural and silvicultural production. However, many rootstock plants suffer from undesirable lateral bud outgrowth, low grafting success rates or poor rooting. Here, we used a root‐predominant gene promoter (SbUGT) to drive the expression of a tryptophan‐2‐monooxygenase gene (iaaM) from Agrobacterium tumefaciens to increase auxin levels in tobacco. The transgenic plants, when used as a rootstock, displayed inhibited lateral bud outgrowth, enhanced grafting success rate and improved root initiation. However, root elongation and biomass of SbUGT::iaaM transgenic plants were reduced compared to those of wild‐type plants. In contrast, when we used this same promoter to drive CKX (a cytokinin degradation gene) expression, the transgenic tobacco plants displayed enhanced root elongation and biomass. We then made crosses between the SbUGT::CKX and SbUGT::iaaM transgenic plants. We observed that overexpression of the CKX gene neutralized the negative effects of auxin overproduction on root elongation. Also, the simultaneous expression of both the iaaM and CKX genes in rootstock did not disrupt normal growth and developmental patterns in wild‐type scions. Our results demonstrate that expression of both the iaaM and CKX genes predominantly in roots of rootstock inhibits lateral bud release from rootstock, improves grafting success rates and enhances root initiation and biomass.  相似文献   

18.
19.
Guo D  Liang J  Qiao Y  Yan Y  Li L  Dai Y 《Journal of plant physiology》2012,169(11):1102-1111
Previous study indicated that increasing endogenous abscisic acid (ABA) level could inhibit the lateral root (LR) formation of peanuts. In this study, we investigated the mechanisms by which ABA regulated lateral root primordia (LRP) initiation in peanuts (Arachis hypogaea L). Results suggested that ABA inhibited LRP initiation through blocking G1-to-S transition in seedlings and mature roots: e.g. 5.8% increase in the proportion of G1 phase and 18% decrease in the proportion of S phase after ABA treatment for 6 days. Further study of the expression of the cell cycle marker gene for G2-to-M transition in peanut roots suggested that AhCYCB1 expression was regulated by ABA. We also investigated the cooperative regulation of LRP initiation by ABA and indole-3-acetic acid (IAA). ABA treatment greatly reduced the effects of endogenous IAA on mature roots. The expression of the IAA polar transport gene AhAUX1 appeared to be regulated by ABA since ABA inhibited auxin-mediated LRP initiation by suppressing AhAUX-dependent auxin transport in peanut roots. We further examined the effect of ABA on the expression of DR5::GUS and AtAUX1 in the model plant Arabidopsis. The results of Arabidopsis were consistent with that of the peanut.  相似文献   

20.
In humans, members of the WNK protein kinase family are osmosensitive regulators of cell volume homeostasis and epithelial ion transport, and mutation of these proteins causes a rare inherited form of hypertension due to increased renal NaCl re‐absorption. A related class of kinases was recently discovered in plants, but their functions are largely unknown. We have identified a root‐specific WNK kinase homolog, GmWNK1, in soybean (Glycine max). GmWNK1 expression was detected in the root, specifically in root cells associated with lateral root formation, and was down‐regulated by abscisic acid (ABA), as well as by mannitol, sucrose, polyethylene glycol and NaCl. In vitro and in vivo experiments showed that GmWNK1 interacts with another soybean protein, GmCYP707A1, which is a key ABA 8′‐hydroxylase that functions in ABA catabolism. Furthermore, 35S‐GmWNK1 transgenic soybean plants had reduced lateral root number and length compared with wild‐type, suggesting a role of GmWNK1 in the regulation of root system architecture. We propose that GmWNK1 functions to fine‐tune ABA‐dependent ABA homeostasis, thereby mediating the regulation of the root system architecture by ABA and osmotic signals. The study has revealed a new function of a plant WNK1 gene from the important staple crop soybean, and has identified a new component of a regulatory pathway that is involved not only in ABA signaling, but also in the repression of lateral root formation by an ABA‐dependent mechanism distinct from known ABA signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号