首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
2.
3.
Plants, as sessile organisms, have acquired through evolution sophisticated regulatory signal pathways to overcome external variable factors during each stage of the life cycle. Among these regulatory signals, two pathways in particular, reactive oxygen species and reactive nitrogen species, have become of significant interest in several aspects of plant biology, underpinning these molecules as critical regulators during development, cellular differentiation, and plant‐pathogen interaction. Recently, redox posttranslational modifications (PTM), such as S‐nitrosylation on cysteine residues and tyrosine nitration, have shed light on multiple protein targets, as they are associated with signal networks/downstream metabolic pathways, capable of transducing the imbalance of redox hemostasis and consequently redirecting the biochemical status under stress conditions. However, most of the redox PTM have been studied only in the intracellular compartment, providing limited information concerning redox PTM in the extracellular matrix of plant cells. Nevertheless, recent studies have indicated the plausibility of redox PTM in extracellular proteins, including cell wall associated proteins. Accordingly, in this review, we endeavor to examine evidence of redox PTM supported by mass spectrometry data in the intracellular and extracellular space in plant cells. As a further example, we focus the last section of this review on illustrating, using molecular dynamics simulation, the effect of S‐nitrosylation on the structural conformation of well‐known cell wall‐associated proteins including pectin methylesterase and xyloglucan endo‐transglycosylases.  相似文献   

4.
Human high‐temperature requirement protein 1 (HTRA1) is a member of serine proteases and consists of four well‐defined domains—an IGFBP domain, a Kazal domain, a protease domain and a PDZ domain. HTRA1 is a secretory protein and also present intracellularly and associated with microtubules. HTRA1 regulates a broad range of physiological processes via its proteolytic activity. This review examines the role of HTRA1 in bone biology, osteoarthritis, intervertebral disc (IVD) degeneration and tumorigenesis. HTRA1 mediates diverse pathological processes via a variety of signalling pathways, such as TGF‐β and NF‐κB. The expression of HTRA1 is increased in arthritis and IVD degeneration, suggesting that HTRA1 protein is attributed to cartilage degeneration and disease progression. Emerging evidence also suggests that HTRA1 has a role in tumorigenesis. Further understanding the mechanisms by which HTRA1 displays as an extrinsic and intrinsic regulator in a cell type–specific manner will be important for the development of HTRA1 as a therapeutic target.  相似文献   

5.
6.
We employed whole‐mount in situ hybridization and immunohistochemistry to study the spatial pattern of hsp30 gene expression in normal and heatshocked embryos during Xenopus laevis development. Our findings revealed that hsp30 mRNA accumulation was present constitutively only in the cement gland of early and midtailbud embryos, while hsp30 protein was detected until at least the early tadpole stage. Heat shock‐induced accumulation of hsp30 mRNA and protein was first observed in early and midtailbud embryos with preferential enrichment in the cement gland, somitic region, lens placode, and proctodeum. In contrast, cytoskeletal actin mRNA displayed a more generalized pattern of accumulation which did not change following heat shock. In heat shocked midtailbud embryos the enrichment of hsp30 mRNA in lens placode and somitic region was first detectable after 15 min of a 33°C heatshock. The lowest temperature capable of inducing this pattern was 30°C. Placement of embryos at 22°C following a 1‐h 33°C heat shock resulted in decreased hsp30 mRNA in all regions with time, although enhanced hsp30 mRNA accumulation still persisted in the cement gland after 11 h compared to control. In late tailbud embryos the basic midtailbud pattern of hsp30 mRNA accumulation was enhanced with additional localization to the spinal cord as well as enrichment across the embryo surface. These studies demonstrate that hsp30 gene expression can be detected constitutively in the cement gland of tailbud embryos and that heat shock results in a preferential accumulation of hsp30 mRNA and protein in certain tissues. Dev. Genet. 25:365–374, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The rust red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae), is a pest of stored grain and one of the most studied insect model species. Some of the previous studies involved heat response studies in terms of survival and heat shock protein expression, which are regulated to protect other proteins against environmental stress conditions. In the present study, we characterize the impedance profile with the xCELLigence Real‐Time Cell Analyzer and study the effect of increased temperature in cell growth and viability in the cell line BCIRL‐TcA‐CLG1 (TcA) of T. castaneum. This novel system measures cells behavior in real time and is applied for the first time to insect cells. Additionally, cells are exposed to heat shock, increased salinity, acidic pH and UV‐A light with the aim of measuring the expression levels of Hsp27, Hsp68a, and Hsp83 genes. Results show a high thermotolerance of TcA in terms of cell growth and viability. This result is likely related to gene expression results in which a significant up‐regulation of all studied Hsp genes is observed after 1 h of exposure to 40 °C and UV light. All 3 genes show similar expression patterns, but Hsp27 seems to be the most affected. The results of this study validate the RTCA method and reveal the utility of insect cell lines, real‐time analysis and gene expression studies to better understand the physiological response of insect cells, with potential applications in different fields of biology such as conservation biology and pest management.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号