首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We have identified the tomato I gene for resistance to the Fusarium wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol) and show that it encodes a membrane‐anchored leucine‐rich repeat receptor‐like protein (LRR‐RLP). Unlike most other LRR‐RLP genes involved in plant defence, the I gene is not a member of a gene cluster and contains introns in its coding sequence. The I gene encodes a loopout domain larger than those in most other LRR‐RLPs, with a distinct composition rich in serine and threonine residues. The I protein also lacks a basic cytosolic domain. Instead, this domain is rich in aromatic residues that could form a second transmembrane domain. The I protein recognises the Fol Avr1 effector protein, but, unlike many other LRR‐RLPs, recognition specificity is determined in the C‐terminal half of the protein by polymorphic amino acid residues in the LRRs just preceding the loopout domain and in the loopout domain itself. Despite these differences, we show that I/Avr1‐dependent necrosis in Nicotiana benthamiana depends on the LRR receptor‐like kinases (RLKs) SERK3/BAK1 and SOBIR1. Sequence comparisons revealed that the I protein and other LRR‐RLPs involved in plant defence all carry residues in their last LRR and C‐terminal LRR capping domain that are conserved with SERK3/BAK1‐interacting residues in the same relative positions in the LRR‐RLKs BRI1 and PSKR1. Tyrosine mutations of two of these conserved residues, Q922 and T925, abolished I/Avr1‐dependent necrosis in N. benthamiana, consistent with similar mutations in BRI1 and PSKR1 preventing their interaction with SERK3/BAK1.  相似文献   

2.
Receptor‐like proteins (RLPs), forming an important group of transmembrane receptors in plants, play roles in development and immunity. RLPs contain extracellular leucine‐rich repeats (LRRs) and, in contrast with receptor‐like kinases (RLKs), lack a cytoplasmic kinase required for the initiation of downstream signalling. Recent studies have revealed that the RLK SOBIR1/EVR (SUPPRESSOR OF BIR1‐1/EVERSHED) specifically interacts with RLPs. SOBIR1 stabilizes RLPs and is required for their function. However, the mechanism by which SOBIR1 associates with RLPs and regulates RLP function remains unknown. The Cf immune receptors of tomato (Solanum lycopersicum), mediating resistance to the fungus Cladosporium fulvum, are RLPs that also interact with SOBIR1. Here, we show that both the LRR and kinase domain of SOBIR1 are dispensable for association with the RLP Cf‐4, whereas the highly conserved GxxxGxxxG motif present in the transmembrane domain of SOBIR1 is essential for its interaction with Cf‐4 and additional RLPs. Complementation assays in Nicotiana benthamiana, in which endogenous SOBIR1 levels were knocked down by virus‐induced gene silencing, showed that the LRR domain as well as the kinase activity of SOBIR1 are required for the Cf‐4/Avr4‐triggered hypersensitive response (HR). In contrast, the LRRs and kinase activity of SOBIR1 are not required for facilitation of Cf‐4 accumulation. Together, these results suggest that, in addition to being a stabilizing scaffold for RLPs, SOBIR1 is also required for the initiation of downstream signalling through its kinase domain.  相似文献   

3.
4.
Identification of two novel genes for blackleg resistance in Brassica napus   总被引:1,自引:0,他引:1  
Blackleg, caused by Leptosphaeria maculans, is a major disease of Brassica napus. Two populations of B. napus DH lines, DHP95 and DHP96, with resistance introgressed from B. rapa subsp. sylvestris, were genetically mapped for resistance to blackleg disease with restriction fragment length polymorphism markers. Examination of the DHP95 population indicated that a locus on linkage group N2, named LepR1, was associated with blackleg resistance. In the DHP96 population, a second locus on linkage group N10, designated LepR2, was associated with resistance. We developed BC1 and F2 populations, to study the inheritance of resistance controlled by the genes. Genetic analysis indicated that LepR1 was a dominant nuclear allele, while LepR2 was an incompletely dominant nuclear resistance allele. LepR1 and LepR2 cotyledon resistance was further evaluated by testing 30 isolates from Canada, Australia, Europe, and Mexico. The isolates were from B. napus, B. juncea, and B. oleracea and represented different pathogenicity groups of L. maculans. Results indicated that LepR1 generally conferred a higher level of cotyledon resistance than LepR2. Both genes exhibited race-specific interactions with pathogen isolates; virulence on LepR1 was observed with one isolate, pl87-41, and two isolates, Lifolle 5, and Lifolle 6, were virulent on LepR2. LepR1 prevented hyphal penetration, while LepR2 reduced hyphal growth and inhibited sporulation. Callose deposition was associated with resistance for both loci.  相似文献   

5.
Blackleg, caused by Leptosphaeria maculans, is one of the most economically important diseases of Brassica napus worldwide. Two blackleg-resistant lines, 16S and 61446, were developed through interspecific hybridization between B. napus and B. rapa subsp. sylvestris and backcrossing to B. napus. Classical genetic analysis demonstrated that a single recessive gene in both lines conferred resistance to L. maculans and that the resistance alleles were allelic. Using BC1 progeny derived from each resistant plant, this locus was mapped to B. napus linkage group N6 and was flanked by microsatellite markers sN2189b and sORH72a in an interval of about 10 cM, in a region equivalent to about 6 Mb of B. rapa DNA sequence. This new resistance gene locus was designated as LepR4. The two lines were evaluated for resistance to a wide range of L. maculans isolates using cotyledon inoculation tests under controlled environment conditions, and for stem canker resistance in blackleg field nurseries. Results indicated that line 16S, carrying LepR4a, was highly resistant to all isolates tested on cotyledons and had a high level of stem canker resistance under field conditions. Line 61446, carrying LepR4b, was only resistant to some of the isolates tested on cotyledons and was weakly resistant to stem canker under field conditions.  相似文献   

6.
Five avirulence genes from Leptosphaeria maculans, the causal agent of blackleg of canola (Brassica napus), have been identified previously through map‐based cloning. In this study, a comparative genomic approach was used to clone the previously mapped AvrLm2. Given the lack of a presence–absence gene polymorphism coincident with the AvrLm2 phenotype, 36 L. maculans isolates were resequenced and analysed for single‐nucleotide polymorphisms (SNPs) in predicted small secreted protein‐encoding genes present within the map interval. Three SNPs coincident with the AvrLm2 phenotype were identified within LmCys1, previously identified as a putative effector‐coding gene. Complementation of a virulent isolate with LmCys1, as the candidate AvrLm2 allele, restored the avirulent phenotype on Rlm2‐containing B. napus lines. AvrLm2 encodes a small cysteine‐rich protein with low similarity to other proteins in the public databases. Unlike other avirulence genes, AvrLm2 resides in a small GC island within an AT‐rich isochore of the genome, and was never found to be deleted completely in virulent isolates.  相似文献   

7.
Leptosphaeria maculans, the causal agent of blackleg disease, interacts with Brassica napus (oilseed rape, canola) and other Brassica hosts in a gene‐for‐gene manner. The avirulence gene AvrLmJ1 has been cloned previously and shown to interact with an unidentified Brassica juncea resistance gene. In this study, we show that the AvrLmJ1 gene maps to the same position as the AvrLm5 locus. Furthermore, isolates complemented with the AvrLmJ1 locus confer avirulence towards B. juncea genotypes harbouring Rlm5. These findings demonstrate that AvrLmJ1 is AvrLm5 and highlight the need for shared resources to characterize accurately avirulence and/or resistance genes.  相似文献   

8.
9.
Methods based on single nucleotide polymorphism (SNP), copy number variation (CNV) and presence/absence variation (PAV) discovery provide a valuable resource to study gene structure and evolution. However, as a result of these structural variations, a single reference genome is unable to cover the entire gene content of a species. Therefore, pangenomics analysis is needed to ensure that the genomic diversity within a species is fully represented. Brassica napus is one of the most important oilseed crops in the world and exhibits variability in its resistance genes across different cultivars. Here, we characterized resistance gene distribution across 50 B. napus lines. We identified a total of 1749 resistance gene analogs (RGAs), of which 996 are core and 753 are variable, 368 of which are not present in the reference genome (cv. Darmor‐bzh). In addition, a total of 15 318 SNPs were predicted within 1030 of the RGAs. The results showed that core R‐genes harbour more SNPs than variable genes. More nucleotide binding site‐leucine‐rich repeat (NBS‐LRR) genes were located in clusters than as singletons, with variable genes more likely to be found in clusters. We identified 106 RGA candidates linked to blackleg resistance quantitative trait locus (QTL). This study provides a better understanding of resistance genes to target for genomics‐based improvement and improved disease resistance.  相似文献   

10.
11.
Protection of many crops is achieved through the use of genetic resistance. Leptosphaeria maculans, the causal agent of blackleg disease of Brassica napus, has emerged as a model for understanding gene-for-gene interactions that occur between plants and pathogens. Whilst many of the characterized avirulence effector genes interact with a single resistance gene in the host, the AvrLm4-7 avirulence gene is recognized by two resistance genes, Rlm4 and Rlm7. Here, we report the “breakdown” of the Rlm7 resistance gene in Australia, under two different field conditions. The first, and more typical, breakdown probably resulted from widescale use of Rlm7-containing cultivars whereby selection has led to an increase of individuals in the L. maculans population that have undergone repeat-induced point (RIP) mutations at the AvrLm4-7 locus. This has rendered the AvrLm4-7 gene ineffective and therefore these isolates have become virulent towards both Rlm4 and Rlm7. The second, more atypical, situation was the widescale use of Rlm4 cultivars. Whilst a single-nucleotide polymorphism is the more common mechanism of virulence towards Rlm4, in this field situation, RIP mutations have been selected leading to the breakdown of resistance for both Rlm4 and Rlm7. This is an example of a resistance gene being rendered ineffective without having grown cultivars with the corresponding resistance gene due to the dual specificity of the avirulence gene. These findings highlight the value of pathogen surveillance in the context of expanded knowledge about potential complexities for Avr–R interactions for the deployment of appropriate resistance gene strategies.  相似文献   

12.
13.
An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag‐Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non‐SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous‐Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag‐Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high‐resolution mapping of loci in B. napus.  相似文献   

14.
The avirulence gene AvrLm4–7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus (oilseed rape), confers a dual specificity of recognition by two resistance genes (Rlm4 and Rlm7) and is strongly involved in fungal fitness. In order to elucidate the biological function of AvrLm4–7 and understand the specificity of recognition by Rlm4 and Rlm7, the AvrLm4–7 protein was produced in Pichia pastoris and its crystal structure was determined. It revealed the presence of four disulfide bridges, but no close structural analogs could be identified. A short stretch of amino acids in the C terminus of the protein, (R/N)(Y/F)(R/S)E(F/W), was well‐conserved among AvrLm4–7 homologs. Loss of recognition of AvrLm4–7 by Rlm4 is caused by the mutation of a single glycine to an arginine residue located in a loop of the protein. Loss of recognition by Rlm7 is governed by more complex mutational patterns, including gene loss or drastic modifications of the protein structure. Three point mutations altered residues in the well‐conserved C–terminal motif or close to the glycine involved in Rlm4‐mediated recognition, resulting in the loss of Rlm7‐mediated recognition. Transient expression in Nicotiana benthamiana (tobacco) and particle bombardment experiments on leaves from oilseed rape suggested that AvrLm4–7 interacts with its cognate R proteins inside the plant cell, and can be translocated into plant cells in the absence of the pathogen. Translocation of AvrLm4–7 into oilseed rape leaves is likely to require the (R/N)(Y/F)(R/S)E(F/W) motif as well as an RAWG motif located in a nearby loop that together form a positively charged region.  相似文献   

15.
Blackleg (stem canker) caused by the fungus Leptosphaeria maculans is one of the most damaging diseases of oilseed rape (Brassica napus). Crop relatives represent a valuable source of “new” resistance genes that could be used to diversify cultivar resistance. B. rapa, one of the progenitors of B. napus, is a potential source of new resistance genes. However, most of the accessions are heterozygous so it is impossible to directly detect the plant genes conferring specific resistance due to the complex patterns of avirulence genes in L. maculans isolates. We developed a strategy to simultaneously characterize and introgress resistance genes from B. rapa, by homologous recombination, into B. napus. One B. rapa plant resistant to one L. maculans isolate was used to produce B. rapa backcross progeny and a resynthesized B. napus plant from which a population of doubled haploid lines was derived after crossing with natural B. napus. We then used molecular analyses and resistance tests on these populations to identify and map the resistance genes and to characterize their introgression from B. rapa into B. napus. Three specific genes conferring resistance to L. maculans (Rlm1, Rlm2 and Rlm7) were identified in B. rapa. Comparisons of genetic maps showed that two of these genes were located on the R7 linkage group, in a region homologous to the region on linkage group N7 in B. napus, where these genes have been reported previously. The results of our study offer new perspectives for gene introgression and cloning in Brassicas.  相似文献   

16.
An efficient DNA extraction protocol and polymerase chain reaction (PCR) assay for detecting Leptosphaeria maculans from infected seed lots of oilseed rape were developed. L. maculans, the causal agent of blackleg, a damaging disease in oilseeds rape/canola worldwide, was listed as a quarantine disease by China in 2009. China imports several millions of tons of oilseeds every year. So there is a high risk that this pathogen will be introduced to China via contaminated seeds. Seed contamination is one of the most significant factors in the global spread of phytopathogens. Detection of L. maculans in infected seed lots by PCR assay is difficult due to the low level of pathogen mycelium/spores on seeds and PCR inhibitors associated with the seeds of oilseed rape. In our study, these two major obstacles were overcome by the development of a two‐step extraction protocol combined with a nested PCR. This extraction protocol (kit extraction after CTAB method) can efficiently extract high‐quality DNA for PCR. Amplification results showed that the detection threshold for conventional PCR and nested PCR was, respectively, 1 ng and 10 fg of DNA per μl in mycelia samples. On contaminated seed lots of oilseed rape, the detection threshold of conventional and nested PCR was 709 fg/μl and 709 ag/μl of DNA, respectively. The DNA extraction protocol and PCR assay developed in this study can be used for rapid and reliable detection of L. maculans from infected seeds of oilseed rape .  相似文献   

17.
The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a Bnigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid Bnapus, in which napus‐type Bnapus was derived from Boleracea, while polima‐type Bnapus was inherited from Brapa. In addition, the mitochondrial genome of napus‐type Bnapus was closer to botrytis‐type than capitata‐type B. oleracea. The sub‐stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome.  相似文献   

18.
Leptosphaeria maculans is the most important fungal pathogen of canola (Brassica napus, oilseed rape) that causes the devastating stem canker in canola fields of western Canada. The population genetic structure of L. maculans, represented by nine subpopulations from a 6‐year period and three different provinces in western Canada, was determined using ten minisatellite markers. Isolates collected at different locations in six consecutive years had an even distribution of MAT1‐1 and MAT1‐2 across the nine subpopulations. All subpopulations of L. maculans exhibited a moderate gene diversity (= 0.356–0.585). The majority of the genetic variation occurred within subpopulations. Approximately 8% and 4% of the variations were distributed between sampling year and location, respectively. Genetic distance (FST) results, using analysis of molecular variation (AMOVA), indicated that subpopulation pairing within isolates by year ranged from FST = 0.010 to 0.109, and the location subpopulation ranged from FST = 0.038 to 0.085. Bayesian clustering analyses of multiloci inferred two distinct clusters in all the subpopulations examined. This study indicates a relatively high degree of gene exchange between the different L. maculans isolates. Our results suggest that this can occur in the wide growing areas of canola fields in western Canada. This gene exchange produced different gene allele frequencies and divergence between populations.  相似文献   

19.
20.
Functional genomic studies of many polyploid crops, including rapeseed (Brassica napus), are constrained by limited tool sets. Here we report development of a gain‐of‐function platform, termed ‘iFOX (inducible Full‐length cDNA OvereXpressor gene)‐Hunting’, for inducible expression of B. napus seed cDNAs in Arabidopsis. A Gateway‐compatible plant gene expression vector containing a methoxyfenozide‐inducible constitutive promoter for transgene expression was developed. This vector was used for cloning of random cDNAs from developing B. napus seeds and subsequent Agrobacterium‐mediated transformation of Arabidopsis. The inducible promoter of this vector enabled identification of genes upon induction that are otherwise lethal when constitutively overexpressed and to control developmental timing of transgene expression. Evaluation of a subset of the resulting ~6000 Arabidopsis transformants revealed a high percentage of lines with full‐length B. napus transgene insertions. Upon induction, numerous iFOX lines with visible phenotypes were identified, including one that displayed early leaf senescence. Phenotypic analysis of this line (rsl‐1327) after methoxyfenozide induction indicated high degree of leaf chlorosis. The integrated B. napuscDNA was identified as a homolog of an Arabidopsis acyl‐CoA binding protein (ACBP) gene designated BnACBP1‐like. The early senescence phenotype conferred by BnACBP1‐like was confirmed by constitutive expression of this gene in Arabidopsis and B. napus. Use of the inducible promoter in the iFOX line coupled with RNA‐Seq analyses allowed mechanistic clues and a working model for the phenotype associated with BnACBP1‐like expression. Our results demonstrate the utility of iFOX‐Hunting as a tool for gene discovery and functional characterization of Brassica napus genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号