首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Periodic flooding of trees in tropical floodplains and reservoirs where water levels fluctuate is a common phenomenon. The effects of flooding and subsequent recovery on gas exchange, chlorophyll fluorescence and growth responses of Melaleuca alternifolia seedlings, a tall shrub species used in floodplain and reservoir forest restoration in southern China, were studied during a grow season (from March to December in 2007). M. alternifolia seedlings were flooded for 180 days, drained and left to recover for another 60 days. Survival rates of the seedlings were 100% during the 180-day flooding period. Chlorophyll (Chl) content, net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) of the flooded seedlings were all significantly lower than those of the control. Significant reductions of photochemical quenching coefficient (qp) and increases of nonphotochemical quenching (NPQ) in the flooded seedlings were observed. However, there were no significant differences in the maximal quantum yield of PSII photochemistry (Fv/Fm) between treatments. All seedlings survived during the two-month recovery period after the flooded treatment was drained, and the biomass and height of the recovered seedlings approached those of the control at the end of the experiment. During the first-month recovery period, Chl content, P N, g s and E in the recovered seedlings were all obviously low, then increased gradually and rose to the levels similar to the control by the end of the experiment. Quenching analysis revealed significant reductions of qp and increments of NPQ in the recovered seedlings at the beginning of draining, and a nearly complete recovery for both parameters by the end of the experiment. However, Fv/Fm of the recovered seedlings did not differ significantly from the control during the recovery period. Our study demonstrated that M. alternifolia seedlings can survive and grow through 180 days of flooding with a subsequent 60-day recovery period in drained conditions, indicating that seedlings of this species would be suitable for afforestation in areas exposed to intermittent flooding.  相似文献   

2.
To evaluate the tolerance of riparian plant Distylium chinense in Three Gorges Reservoir Region to anti-season flooding, a simulation flooding experiment was conducted during Autumn and Winter, and morphology and photosynthesis of D. chinense seedlings and their recovery growth after soil drainage were analyzed in different duration of flooding and flooding depth. The seedlings were submitted to four treatments: (1) 40 seedlings unflooded and watered daily as control (Unflooded, CK); (2) 120 seedlings flooded at 1 cm above the ground level (F-1 cm); (3) 120 seedlings flooded at 12 cm above the ground level (F-12 cm) and (4) 120 seedlings completely submerged with 2 m water depth (F-2 m, top of plants at 2 m below water surface). The flooding survival, plant height, stem diameter, adventitious roots, stem lenticels, epicormic shoots, chlorophyll content and photosynthesis parameters were determined at 0, 15, 30, 90 days in flooding stress and 15, 60 days after soil drainage. The results showed that the survival of the seedlings subjected to flooding was 100% for all repeated measurements in all treatments. Adventitious roots, hypertrophied lenticels and stem hypertrophy were observed in the seedlings flooded for more than 15 d, and increased with the prolonged flooding duration, while disappeared after the soil was drained. Flooding duration and flooding depth showed significant individual and interactive effects on leaf chlorophyll a (Chl a), chlorophyll b (Chl b), and their ratio, chlorophyll (a + b), the net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Cs), and inter-cellular CO2 concentration (Ci) of D. chinense seedlings (P < 0.01). After 15 days of flooding, there was no significant decrease in Pn of the flooded seedlings as compared with that of the control seedlings. Pn of the flooded seedlings was significantly lower than that of the control seedlings after 30 days of flooding (P < 0.05), whereas Pn showed no significant difference among seedlings from three flooding depths. After 90 days of flooding, Pn of the F-2 m flooded seedlings was significantly lower than that of the controls, F-1 cm and F-12 cm flooded seedlings (P < 0.05), but still maintained high photosynthetic capacity. Pn of the F-1 cm and F-12 cm flooded seedlings rose gradually after soil drainage, while, it was significantly lower than that of the control seedlings after 15 days of recovery (P < 0.05). After 60 days of recovery, Pn of all seedlings flooded with different depths showed no significant difference as compared with that of the control seedlings and new leaves grew out in the F-2 m flooded seedlings. The effect of all flooding treatments on Gs, Tr, Chl a, Chl b, Chl a/Chl b and chl (a + b) was basically the same as their effect on Pn, while the effect of all flooding treatments on Ci was quite the contrary. Correlation analysis showed that Pn was positively relative with Gs, Tr, Chl a, Chl b and chl (a + b) (P < 0.05) and significantly negative with Ci (P < 0.05). Therefore, the present study demonstrates that D. chinense has high survival and good recovery growth after long-term flooding in anti-season flooding and could be taken as an excellent candidate species in the re-vegetation of water-level-fluctuation areas in Three Gorges Reservoir Region.  相似文献   

3.
Li X L  Li N  Yang J  Ye F Z  Chen F J  Chen F Q 《农业工程》2011,31(1):31-39
To evaluate the tolerance of riparian plant Distylium chinense in Three Gorges Reservoir Region to anti-season flooding, a simulation flooding experiment was conducted during Autumn and Winter, and morphology and photosynthesis of D. chinense seedlings and their recovery growth after soil drainage were analyzed in different duration of flooding and flooding depth. The seedlings were submitted to four treatments: (1) 40 seedlings unflooded and watered daily as control (Unflooded, CK); (2) 120 seedlings flooded at 1 cm above the ground level (F-1 cm); (3) 120 seedlings flooded at 12 cm above the ground level (F-12 cm) and (4) 120 seedlings completely submerged with 2 m water depth (F-2 m, top of plants at 2 m below water surface). The flooding survival, plant height, stem diameter, adventitious roots, stem lenticels, epicormic shoots, chlorophyll content and photosynthesis parameters were determined at 0, 15, 30, 90 days in flooding stress and 15, 60 days after soil drainage. The results showed that the survival of the seedlings subjected to flooding was 100% for all repeated measurements in all treatments. Adventitious roots, hypertrophied lenticels and stem hypertrophy were observed in the seedlings flooded for more than 15 d, and increased with the prolonged flooding duration, while disappeared after the soil was drained. Flooding duration and flooding depth showed significant individual and interactive effects on leaf chlorophyll a (Chl a), chlorophyll b (Chl b), and their ratio, chlorophyll (a + b), the net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Cs), and inter-cellular CO2 concentration (Ci) of D. chinense seedlings (P < 0.01). After 15 days of flooding, there was no significant decrease in Pn of the flooded seedlings as compared with that of the control seedlings. Pn of the flooded seedlings was significantly lower than that of the control seedlings after 30 days of flooding (P < 0.05), whereas Pn showed no significant difference among seedlings from three flooding depths. After 90 days of flooding, Pn of the F-2 m flooded seedlings was significantly lower than that of the controls, F-1 cm and F-12 cm flooded seedlings (P < 0.05), but still maintained high photosynthetic capacity. Pn of the F-1 cm and F-12 cm flooded seedlings rose gradually after soil drainage, while, it was significantly lower than that of the control seedlings after 15 days of recovery (P < 0.05). After 60 days of recovery, Pn of all seedlings flooded with different depths showed no significant difference as compared with that of the control seedlings and new leaves grew out in the F-2 m flooded seedlings. The effect of all flooding treatments on Gs, Tr, Chl a, Chl b, Chl a/Chl b and chl (a + b) was basically the same as their effect on Pn, while the effect of all flooding treatments on Ci was quite the contrary. Correlation analysis showed that Pn was positively relative with Gs, Tr, Chl a, Chl b and chl (a + b) (P < 0.05) and significantly negative with Ci (P < 0.05). Therefore, the present study demonstrates that D. chinense has high survival and good recovery growth after long-term flooding in anti-season flooding and could be taken as an excellent candidate species in the re-vegetation of water-level-fluctuation areas in Three Gorges Reservoir Region.  相似文献   

4.

Background and Aims

Erythrina speciosa is a Neotropical tree that grows mainly in moist habitats. To characterize the physiological, morphological and growth responses to soil water saturation, young plants of E. speciosa were subjected experimentally to soil flooding.

Methods

Flooding was imposed from 2 to 4 cm above the soil surface in water-filled tanks for 60 d. Non-flooded (control) plants were well watered, but never flooded. The net CO2 exchange (ACO2), stomatal conductance (gs) and intercellular CO2 concentration (Ci) were assessed for 60 d. Soluble sugar and free amino acid concentrations and the proportion of free amino acids were determined at 0, 7, 10, 21, 28 and 45 d of treatments. After 28, 45 and 60 d, dry masses of leaves, stems and roots were determined. Stem and root cross-sections were viewed using light microscopy.

Key Results

The ACO2 and gs were severely reduced by flooding treatment, but only for the first 10 d. The soluble sugars and free amino acids increased until the tenth day but decreased subsequently. The content of asparagine in the roots showed a drastic decrease while those of alanine and γ-aminobutyric increased sharply throughout the first 10 d after flooding. From the 20th day on, the flooded plants reached ACO2 and gs values similar to those observed for non-flooded plants. These events were coupled with the development of lenticels, adventitious roots and aerenchyma tissue of honeycomb type. Flooding reduced the growth rate and altered carbon allocation. The biomass allocated to the stem was higher and the root mass ratio was lower for flooded plants when compared with non-flooded plants.

Conclusions

Erythrina speciosa showed 100 % survival until the 60th day of flooding and was able to recover its metabolism. The recovery during soil flooding seems to be associated with morphological alterations, such as development of hypertrophic lenticels, adventitious roots and aerenchyma tissue, and with the maintenance of neutral amino acids in roots under long-term exposure to root-zone O2 deprivation.Key words: Erythrina speciosa, aerenchyma, amino acid content, biomass allocation, photosynthesis, flooding adaptations, stomatal conductance, O2 deficiency, γ-aminobutyric acid (GABA)  相似文献   

5.
Anderson  P.H.  Pezeshki  S.R. 《Photosynthetica》2000,37(4):543-552
Under greenhouse conditions, seedlings of three forest species, baldcypress (Taxodium distichum), nuttall oak (Quercus nuttallii), and swamp chestnut oak (Quercus michauxii) were subjected to an intermittent flooding and subsequent physiological and growth responses to such conditions were evaluated. Baldcypress showed no significant reductions in stomatal conductance (g s) or net photosynthetic rate (P N) in response to flood pulses. In nuttall oak seedlings g s and P N were significantly decreased during periods of inundation, but recovered rapidly following drainage. In contrast, in swamp chestnut oak g s was reduced by 71.8 % while P N was reduced by 57.2 % compared to controls. Baldcypress displayed no significant changes in total mass while oak species had significantly lower leaf and total mass compared to their respective controls. Thus baldcypress and nuttall oak showed superior performance under frequent intermittent flooding regimes due to several factors including the ability for rapid recovery of gas exchange soon after soil was drained. In contrast, swamp chestnut oak seedlings failed to resume gas exchange functions after the removal of flooding.  相似文献   

6.
Gas exchange of Carex cinerascens was carried out in Swan Islet Wetland Reserve (29°48′ N, 112°33′ E). The diurnal photosynthetic course of C. cinerascens in the flooded and the nonflooded conditions were analyzed through the radial basis function (RBF) neural network approach to evaluate the influences of environmental variables on the photosynthetic activity. The inhibition of photosynthesis induced by soil flooding can be attributed to the reduced stomatal conductance (g s), the deficiency of Rubisco regeneration and decreased chlorophyll (Chl) content. As revealed by analysis of artificial neural network (ANN) models, g s was the dominant factor in determining the photosynthesis response. Weighting analysis showed that the effect of water pressure deficit (VPD) > air temperature (T) > CO2 concentration (C a) > air humidity (RH) > photosynthetical photon flux density (PPFD) for the nonflooded model, whereas for the flooded model, the factors were ranked in the order VPD > C a > RH > PPFD > T. The different photosynthetic response of C. cinerascens found between the nonflooded and flooded conditions would be useful to evaluate the flood tolerance at plant species level.  相似文献   

7.
Flooding-induced changes in leaf gas exchanges, grain yield, and yield-related parameters of mungbean were evaluated employing two flood-tolerant (GK48 and VC3945A) and one flood-susceptible (Vo1982A-G) genotypes. Three flooding regimes viz. 1, 3 and 7-day were imposed at vegetative, flowering, and pod-fill stages. Flooding caused a drastic reduction in photosynthesis rates (P n), irrespective of flooding duration. However, the flooded plants recovered P n to a large extent depending on genotypes. Used genotypes showed a significant variation in P n during and after flooding. Post-flooding recovery in P n of GK48 and VC3945A was more pronounced at the vegetative and flowering stages than the pod-fill stage. At the pod-fill stage, only plants of GK48 survived when flooding prolonged for 7 days. Flooded plants showed higher intercellular CO2 concentrations (C i), and reduced stomatal conductance (g s). However, during recovery, P n increased significantly along with reduced C i in flood-tolerant GK48 and VC3945A genotypes. In contrast, C i remained high and P n recovery was minimal in flood-susceptible Vo1982A-G genotype. This implies that mesophyll tolerance rather than stomatal factor might be the major limitation of P n recovery in a susceptible genotype. Very weak relationship between P n and transpiration rate (T r) indicated low water use efficiency (WUE) in flooded plants, but subsequent recovery of both the parameters, suggesting higher WUE, particularly in tolerant genotypes. Seed yield of mungbean was the product of number of pods per plant and seed size, and longer the flooding period, the lower were the pods per plant at the flowering and pod-fill stage. Flooding reduced seed yield in all the three genotypes, but the extent of reduction was much less in flood-tolerant GK48 and VC3945A. Higher yield of flood-tolerant genotypes may be attributed to the rapid recovery of leaf gas exchanges.  相似文献   

8.
Maize plants (Zea mays L.) were subjected to soil flooding for 72, 96, and 120 h. A noticeable decrease in the rate of net photosynthesis (PN) and the activity of ribulose-1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) were observed. The values of intercellular CO2 concentrations (ci) increased in all flooded plants without significant changes in stomatal conductance (gs). The activity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) increased twofold 120 h after soil flooding. Flooding of maize plants led to a decrease in chlorophyll and protein levels and to slight increase of proline content. Flooded plants exhibited a large accumulation of leaf acidity. An increase in the values of some important parameters associated with oxidative stress, namely peroxides production, lipid peroxidation, and electrolyte leakage, confirmed the suggestion that root oxygen deficiency caused photooxidative damage in maize leaves.  相似文献   

9.
Lotus corniculatus L. and Lotus glaber Mill. are warm-season legume species adapted to many kinds of environmental stress, including flooding conditions, whereas other popular forage legumes, like alfalfa or white clover, cannot thrive. This study evaluates the relationship between root aerenchyma, water relations and leaf gas exchange and the differential tolerance to soil flooding of L. corniculatus and L. glaber. Adult plants of these species, established independently in grasslands mesocosms, were subjected to 40 days of early spring flooding at a water depth of 6 cm. Both species presented constitutive aerenchyma tissue in the roots. Under flooding conditions, this parameter was 26.2% in L. glaber and 15.3% in L. corniculatus. In addition, flooded plants of L. glaber presented a leaf biomass 47.5% higher above water while L. corniculatus showed a leaf biomass 59.6% lower in the same layer, in comparison to control plants. Flooded plants of L. glaber maintained the stomatal conductance (g s) and transpiration rate (E) for 25 days, although these parameters reduce slightly to 40–60% in comparison to controls after 40 days of flooding. In this species, a reduction in photosynthesis (A) in flooding conditions was detected only on the last day of measurement. In L. corniculatus, the same parameters (g s, E and A) were affected by flooding since day 18 of treatment, and values reached 25–40% in comparison to control plants after 40 days of flooding. Flooding did not affect above-ground biomass in L. glaber; while in L. corniculatus, above-ground biomass was 35% lower than in control plants. Our results confirmed that L. glaber is more able to cope with flooding stress than L. corniculatus, even in the presence of natural competitors. On the whole, this experiment provides information that can aid in the identification of anatomical and physiological parameters associated with flood-tolerance in this forage legume species, with economic potential for the agricultural areas subject to periodic flooding.  相似文献   

10.
A greenhouse experiment was conducted on Acer rubrum seedlings to evaluate the effects of flood frequency on production and allocation of biomass and to test the effects of N and P fertilization on production and allocation. Seedlings from the Dismal Swamp were subjected to three flood treatments (no flooding, intermittent flooding, and continuous flooding) and four enrichment treatments (no enrichment, N additions, P additions, and N + P additions). More continuous flooding resulted in less biomass production. Biomass increased during the study in all treatments except for root mass in the continuously flooded treatment. However, production of abundant adventitious roots compensated for the lack of normal root growth. Root/shoot ratios exhibited the greatest decreases in the continuously flooded plants. Plants with N + P added had significantly more leaf, stem, and total mass than the nonenriched plants four months into the study. The N + P additions had apparently compensated for the effects of flood stress in the continuously flooded plants by the end of the study. The fertilized seedlings accumulated higher concentrations of N and P, but their nutrient use efficiency (biomass production per unit nutrient absorbed) was lower than in the nonenriched plants. Acer rubrum seedlings survive flooded conditions through several adaptations; however, theirgrowth is slowed by continuous flooding.  相似文献   

11.
Red alder (Alnus rubra Bong.) and sitka alder (A. viridis ssp. sinuata [Regel] Löve & Löve) are nitrogen-fixing woody species that grow sympatrically along the Pacific coast of North America. Red alder is found in poorly drained lowlands, as well as in soils of moist upland slopes, whereas sitka alder generally colonizes well-drained soils. To identify factors that contribute to flood tolerance, we conducted greenhouse experiments subjecting both species to a 20-day flood and 10-day recovery and red alder to a 50-day flood and 20-day recovery. We determined the effect of this stress on nitrogenase activity, root and nodule alcohol dehydrogenase (ADH) activity, lenticel and adventitious root development, relative growth rate (RGR), and leaf gas exchange. After 24 h of flooding, nitrogenase activity could not be detected in either species. Limited nitrogenase activity did return in red alder at the end of a 10-day recovery following the 20-day flood, but sitka alder showed no recovery of nitrogenase activity. After 50 days of continuous flooding, red alder nitrogenase activity returned to pretreatment levels. Red alder root and nodule ADH activity was more than twice that of sitka alder under flooded conditions. Sitka alder showed extensive root mortality and leaf abscission over the same 20-day flooding period. Flooded red alder exhibited an initial decline in root RGR, but recovered between days 10 and 20 with the formation of adventitious roots. Furthermore, initiation of adventitious roots in red alder coincided with an increase in stomatal conductance without a similar recovery of carbon dioxide exchange rate. Sitka alder formed few adventitious roots, lost much of its root and leaf biomass, and showed no restoration of growth during flooding or recovery. Different responses of red and sitka alder to flooding serve as a partial explanation for the different patterns of distribution of these species and suggest some adaptations of red alder that permit flood tolerance.  相似文献   

12.
Two experiments, a split-root experiment and a root pressurizing experiment, were performed to test whether hydraulic signalling of soil drying plays a dominant role in controlling stomatal closure in herbaceous bell pepper plants. In the split-root experiment, when both root parts were dried, synchronous decreases in stomatal conductance (gs), leaf water potential (LWP) and stem sap flow (SFstem) were observed. The value of gs was found to be closely related to soil water potential (SWP) in both compartments. Tight relationships were observed between gs and stem sap flow under all conditions of water stress, indicating a complete stomatal adjustment of transpiration. When the half-root system has been dried to the extent that its water uptake dropped to almost zero, declines in gs of less than 20% were observed without obvious changes in LWP. The reduced plant hydraulic conductance resulting from decreased sap flow and unchanged LWP may be a hydraulic signal controlling stomatal closure; the results of root pressurizing supported this hypothesis. Both LWP and gs in water-stressed plants recovered completely within 25 min of the application of root pressurizing, and decreased significantly within 40 min after pressure release, indicating the hydraulic control of stomatal closure. Our results are in contrast to those of other studies on other herbaceous species, which suggested that chemical messengers from the roots bring about stomatal closure when plants are in water stress.  相似文献   

13.
In contrast with other native Populus species in North America, Populus tremuloides (aspen) can successfully establish itself in drought‐prone areas, yet no comprehensive analysis has been performed on the ability of seedlings to withstand and recover from a severe drought resulting in complete leaf mortality. Here, we subjected 4‐month‐old aspen seedlings grown in two contrasting soil media to a progressive drought until total leaf mortality, followed by a rewatering cycle. Stomatal conductance (gs), photosynthesis and transpiration followed a sigmoid decline with declining fraction of extractable soil water values. Cessation of leaf expansion occurred close to the end of the linear‐decrease phase, when gs was reduced by 95%. Leaf mortality started after gs reached the lowest values, which corresponded to a stem–xylem pressure potential (Ψxp) of ?2.0 MPa and a percent loss of stem hydraulic conductivity (PLC) of 50%. In plants with 50% leaf mortality, PLC values remained around 50%. Complete leaf mortality occurred at an average stem PLC of 90%, but all seedlings were able to resprout after 6–10 days of being rewatered. Plants decapitated at soil level before rewatering developed root suckers, while those left with a 4‐cm stump or with their stems intact resprouted exclusively from axillary buds. Resprouting was accompanied by recovery of stem hydraulic conductivity, with PLC values around 30%. The percentage of resprouted buds was negatively correlated with the stem %PLC. Thus, the recovery of stem hydraulic conductivity appears as an important factor in the resprouting capacity of aspen seedlings following a severe drought.  相似文献   

14.
The potential for improving the performance of seedlings of woody species under flood stress was evaluated. Seedlings of baldcypress (Taxodium distichum), nuttall oak (Quercus nuttallii), and swamp chestnut oak (Quercus michauxii) were subjected to a two-phase study in which soil moisture regime was controlled. During Phase I, plants were randomly assigned to either: Control, well-watered and drained conditions; or intermittent flooding, alternating flooding and drained conditions. Following completion of Phase I, seedlings in each treatment were assigned randomly to one of two treatments: well-watered but drained or continuously flooded. Thus during Phase II, plants were divided into four groups: Control (A), intermittent flooding during Phase I and draining during Phase II (B), control during Phase I and continuously flooding during Phase II (C), and intermittently flooded during Phase I and continuously flooded during Phase II (D). Stomatal conductance (gw) in baldcypress increased in flooded treatments ranging from 112 to 128 percnt; of controls. Net photosynthesis (Pn) in baldcypress was not significantly affected by flooding while in oaks, Pn and gw decreased significantly in response to flooding. In oaks, flood pre-conditioning did not affect growth or physiological responses during phase II significantly. However, stomatal conductance of flood-hardened baldcypress was increased compared to seedlings that were not hardened. The study species developed significantly higher root porosity under flooded conditions compared to controls. Flood pre-conditioning did not appear to increase root porosity although it may have accelerated the process.  相似文献   

15.
Distylium chinense is an evergreen shrub used for the vegetation recovery of floodplain and riparian areas in Three Gorges Reservoir Region. To clarify the morphological and physiological responses and tolerance of Distylium chinense to off-season flooding, a simulation flooding experiment was conducted during autumn and winter. Results indicated that the survival rate of seedlings was 100%, and that plant height and stem diameter were not significantly affected by flooding. Adventitious roots and hypertrophic lenticels were observed in flooded seedlings after 30 days of flooding. Flooding significantly reduced the plant biomass of roots, net photosynthetic rate (P n), stomatal conductance (g s), transpiration rate (T r), maximum photochemical efficiency (Fv/Fm), photochemical quenching (qP), and electron transport rate (ETR) in leaves, and also affected the allocation and transport of carbohydrate and nutrients. However, D. chinense was able to maintain stable levels of P n, Fv/Fm, qP, ETR, and nutrient content (N and P) in leaves and to store a certain amount of carbohydrate in roots over prolonged durations of flooding. Based on these results, we conclude that there is a high flooding tolerance in D. chinense, and the high survival rate of D. chinense may be attributable to a combination of morphological and physiological responses to flooding.  相似文献   

16.

Acid sulphate soil contains high amounts of iron (Fe) and aluminum (Al), and their contamination has been reported as major problems, especially in rainfed and irrigated lowland paddy fields. Rice is sensitive to Fe and Al grown in acid soil (pH < 5.5), leading to growth inhibition and grain yield loss. The objective of this study was to evaluate Fe and/or Al uptake, translocation, physiological adaptation, metal toxicity, and growth inhibition in rice genotypes grown in acid soil. Fe and Al in the root tissues of all rice genotypes were enriched depending on the exogenous application of either Fe or Al in the soil solution, leading to root growth inhibition, especially in the KDML105 genotype. Expression level of OsYSL1 in KDML105 was increased in relation to metal uptake into root tissues, whereas OsVIT2 was downregulated, leading to Fe (50.3 mg g−1 DW or 13.1 folds over the control) and Al (4.8 mg g−1 DW or 2.2 folds over the control) translocation to leaf tissues. Consequently, leaf greenness (SPAD), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (E) in the leaf tissues of genotype KDML105 under Fe + Al toxicity significantly declined by 28.4%, 35.3%, 55.6%, and 51.6% over the control, respectively. In Azucena (AZU; Fe/Al tolerant), there was a rapid uptake of Fe and Al by OsYSL1 expression in the root tissues, but a limited secretion into vacuole organelles by OsVIT2, leading to a maintenance of low level of toxicity driven by an enhanced accumulation of glutathione together with downregulation of OsGR expression level. In addition, Fe and Al restrictions in the root tissues of genotype RD35 were evident; therefore, crop stress index (CSI) of Fe + Al–treated plants was the maximum, leading to an inhibition of gs (53.6% over the control) and E (49.0% over the control). Consequently, free proline, total phenolic compounds, and ascorbic acid in the leaf tissues of rice under Fe + Al toxicity significantly increased by 3.2, 1.2, and 1.5 folds over the control, respectively, indicating their functions in non-enzymatic antioxidant defense. Moreover, physiological parameters including leaf temperature (Tleaf) increment, high level of CSI (>0.6), SPAD reduction, photon yield of PSII (ΦPSII) diminution, Pn, gs, and E inhibition in rice genotype IR64 (Fe/Al-sensitive) under Fe + Al treatment were clearly demonstrated as good indicators of metal-induced toxicity. Our results on Fe- and/or Al-tolerant screening to find out the candidate genotypes will contribute to present screening and breeding efforts, which in turn help increase rice production in the Fe/Al-contaminated acid soil under lowland conditions.

  相似文献   

17.
In the seasonally flooded forest of the Mapire River, a tributary of the Orinoco, seedlings remain totally covered by flood water for over six months. In order to characterize the physiological response to flooding and submergence, seedlings of the tree Pouteria orinocoensis, an important component of the forest vegetation, were subjected experimentally to flooding. Flooding was imposed gradually, the maximum level of flood including submerged and emerged leaves. After 45 d a severe reduction of net photosynthetic rate (P N) and stomatal conductance (g s) was observed in emerged leaves, whereas leaf water potential remained constant. The decrease in P N of emerged leaves was associated to an increase in both relative stomatal and non-stomatal limitations, and the maintenance of the internal/air CO2 concentration (C i/C a) for at least 20 d of flooding. After this time, both P N and g s became almost zero. The decrease in photosynthetic capacity of emerged leaves with flooding was also evidenced by a decrease in carboxylation efficiency; photon-saturated photosynthetic rate, and apparent quantum yield of CO2 fixation. Oxygen evolution rate of submerged leaves measured after three days of treatment was 7 % of the photosynthetic rate of emerged leaves. Submersion determined a chronic photoinhibition of leaves, viewed as a reduction in maximum quantum yield in dark-adapted leaves, whereas the chlorophyll fluorescence analysis of emerged leaves pointed out at the occurrence of dynamic, rather than chronic, photoinhibition. This was evidenced by the absence of photochemical damage, i.e. the maintenance of maximum quantum yield in dark-adapted leaves. Nevertheless, the observed lack of complementarity between photochemical and non-photochemical quenching after 12 d of flooding implies that the capacity for photochemical quenching decreased in a non-co-ordinate manner with the increase in non-photochemical quenching.  相似文献   

18.
The introduced shrub Tamarix ramosissima invades riparian zones, but loses competitiveness under flooding. Metabolic effects of flooding could be important for T. ramosissima, but have not been previously investigated. Photosynthesis rates, stomatal conductance, internal (intercellular) CO2, transpiration, and root alcohol dehydrogenase (ADH) activity were compared in T. ramosissima across soil types and under drained and flooded conditions in a greenhouse. Photosynthesis at 1500 μmol quanta m−2 s−1 (A1500) in flooded plants ranged from 2.3 to 6.2 μmol CO2 m−2 s−1 during the first week, but A1500 increased to 6.4–12.7 μmol CO2 m−2 s−1 by the third week of flooding. Stomatal conductance (gs) at 1500 μmol quanta m−2 s−1 also decreased initially during flooding, where gs was 0.018 to 0.099 mol H2O m−2 s−1 during the first week, but gs increased to 0.113–0.248 mol H2O m−2 s−1 by the third week of flooding. However, photosynthesis in flooded plants was reduced by non-stomatal limitations, and subsequent increases indicate metabolic acclimation to flooding. Root ADH activities were higher in flooded plants compared to drained plants, indicating oxygen stress. Lower photosynthesis and greater oxygen stress could account for the susceptibility of T. ramosissima at the onset of flooding. Soil type had no effect on photosynthesis or on root ADH activity. In the field, stomatal conductance, leaf water potential, transpiration, and leaf δ13C were compared between T. ramosissima and other flooded species. T. ramosissima had lower stomatal conductance and water potential compared to Populus deltoides and Phragmites australis. Differences in physiological responses for T. ramosissima could become important for ecological concerns.  相似文献   

19.
Extensive research has found that nighttime transpiration (E n) is positively correlated to the vapour pressure deficit (VPD), that suggested E n was highest during the night under high temperatures and low humidity along with high soil water availability, typically for the riparian forest in the extreme arid region of China. This study used the heat ratio method to measure sap velocity (V s) for mature and saplings Populus euphratica Oliv., and then E n was conservatively calculated as total nocturnal sap flow (F s, the product of V s and sapwood area A s) between 01:00 to 06:00. A gas exchange system was used to measure the leaf transpiration rate (T r) and stomatal conductance (g s) of saplings. For mature trees, nighttime V s was extensive and logarithmic correlated to VPD (similar to daytime). For saplings, g s and T r was extensive in different months, and also a strong logarithmic relationship was found between V s and VPD for both daytime and nighttime periods. Both of stem sap flow and leaf gas exchange suggusted the occurrence of E n, whether mature or sapling trees. E n contribution to daily transpiration (E d) was high just as expected for P. euphratica, which was confirmed by proportional E n to E d (E n/E d) means taken in 2012 (24.99%) and 2013 (34.08%). Compared to mature trees, E n/E d of saplings in 2013 was lower with means of 12.06%, that supported further by the shorter duration times and less T r,n (16.64%) and g s,n (26.45%) of leaf, suggesting that E n magnitude is associated to individual the tree size, that effect to stored water of individual trees, although this hypothesis requires further research.  相似文献   

20.
Reduced stomatal conductance (gs) during soil drought in angiosperms may result from effects of leaf turgor on stomata and/or factors that do not directly depend on leaf turgor, including root‐derived abscisic acid (ABA) signals. To quantify the roles of leaf turgor‐mediated and leaf turgor‐independent mechanisms in gs decline during drought, we measured drought responses of gs and water relations in three woody species (almond, grapevine and olive) under a range of conditions designed to generate independent variation in leaf and root turgor, including diurnal variation in evaporative demand and changes in plant hydraulic conductance and leaf osmotic pressure. We then applied these data to a process‐based gs model and used a novel method to partition observed declines in gs during drought into contributions from each parameter in the model. Soil drought reduced gs by 63–84% across species, and the model reproduced these changes well (r2 = 0.91, P < 0.0001, n = 44) despite having only a single fitted parameter. Our analysis concluded that responses mediated by leaf turgor could explain over 87% of the observed decline in gs across species, adding to a growing body of evidence that challenges the root ABA‐centric model of stomatal responses to drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号