共查询到20条相似文献,搜索用时 15 毫秒
1.
Baccatin III is widely considered to be an inactive derivative of Taxol. We have reexamined its effect on in vitro assembly of tubulin under a variety of conditions. We found baccatin III to be active in all circumstances in which Taxol is active: it assembled GTP-tubulin, GDP-tubulin, and microtubule protein into normal microtubules and stabilized these polymers against cold-induced disassembly. The effect of baccatin III on in vitro microtubule assembly was quantitatively assessed through determination of critical concentrations, which can be used to obtain the apparent equilibrium constants for the addition of tubulin subunits to growing microtubules. The apparent equilibrium constants for the growth reaction for baccatin III-induced GTP-tubulin and GDP-tubulin assembly measured at 37 degrees C were 4.2-4.6-fold less than those measured for Taxol-induced GTP-tubulin and GDP-tubulin assembly. These data indicate that the entire Taxol side chain contributes only about -1 kcal/mol to the apparent standard free energy of microtubule growth at 37 degrees C regardless of the nature of the E site nucleotide. These data also support the idea that the majority of the interactions between Taxol and tubulin that affect this equilibrium occur between the baccatin portion of the molecule and the binding site. We have also observed a structural difference in microtubules formed using baccatin III and Taxol. Baccatin III-induced microtubules were routinely much longer than those assembled by Taxol, even when very high concentrations of baccatin III were employed. One interpretation of these data is that baccatin III and Taxol differ in their abilities to nucleate GTP-tubulin. This difference in activity may have bearing on the large disparity in cytotoxicity of the two molecules. 相似文献
2.
Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. 总被引:36,自引:14,他引:36 下载免费PDF全文
Microtubule-associated proteins (MAP), such as tau, modulate the extent and rate of microtubule assembly and play an essential role in morphogenetic processes, such as axonal growth. We have examined the mechanism by which tau affects microtubule polymerization by examining the kinetics of microtubule assembly and disassembly through direct observation of microtubules using dark-field microscopy. Tau increases the rate of polymerization, decreases the rate of transit into the shrinking phase (catastrophe), and inhibits the rate of depolymerization. Tau strongly suppresses the catastrophe rate, and its ability to do so is independent of its ability to increase the elongation rate. Thus, tau generates a partially stable but still dynamic state in microtubules. This state is perturbed by phosphorylation by MAP2 kinase, which affects all three activities by lowering the affinity of tau for the microtubule lattice. 相似文献
3.
Rodolfo Padilla Ricardo B. Maccioni Jesús Avila 《Molecular and cellular biochemistry》1990,97(1):35-41
Previous studies have demonstrated that the microtubule - associated proteins MAP-2 and tau interact selectively with common binding domains on tubulin defined by the low-homology segments a (430–441) and (422–434). It has been also indicated that the synthetic peptide VRSKIGSTENLKHQPGGG corresponding to the first tau repetitive sequence represents a tubulin binding domain on tau. The present studies show that the calcium-binding protein calmodulin interacts with a tubulin binding site on tau defined by the second repetitive sequence VTSKCGSLGNIHHKPGGG. It was shown that both tubulin and calmodulin bind to tau peptide-Sepharose affinity column. Binding of calmodulin occurs in the presence of 1 mM Ca 2+ and it can be eluted from the column with 4 mM EGTA. These findings provide new insights into the regulation of microtubule assembly, since Ca 2+/calmodulin inhibition of tubulin polymerization into microtubules could be mediated by the direct binding of calmodulin to tau, thus preventing the interaction of this latter protein with tubulin. 相似文献
4.
B Fridén M Wallin J Deinum V Prasad R Luduena 《Archives of biochemistry and biophysics》1987,257(1):123-130
Estramustine phosphate, an estradiol nitrogen-mustard derivative is a microtubule-associated protein (MAP)-binding microtubule inhibitor, used in the therapy of prostatic carcinoma. It was found to inhibit assembly and to induce disassembly of microtubules reconstituted from phosphocellulose-purified tubulin with either tau, microtubule-associated protein 2, or chymotrypsin-digested microtubule-associated protein 2. Estramustine phosphate also inhibited assembly of trypsin-treated microtubules, completely depleted of high-molecular-weight microtubule-associated proteins, but with their microtubule-binding fragment present. In all cases estramustine phosphate induced disassembly to about 50%, at a concentration of approximately 100 microM, at similar protein concentrations. However, estramustine phosphate did not affect dimethyl sulfoxide-induced assembly of phosphocellulose-purified tubulin. Estramustine phosphate is a reversible inhibitor, as the nonionic detergent Triton X-100 was found to counteract the inhibition in a concentration-dependent manner. The reversibility was nondisruptive, as Triton X-100 itself did not affect microtubule assembly, microtubule protein composition, or morphology. This new reversible MAPs-dependent inhibitor estramustine phosphate affects the tubulin assembly, induced by tau, as well as by the small tubulin-binding part of MAP2 with the same concentration dependency. This indicates that tau and the tubulin-binding part of MAP2, in addition to their assembly promoting functions also have binding site(s) for estramustine phosphate in common. 相似文献
5.
A discrete repeated sequence defines a tubulin binding domain on microtubule-associated protein tau 总被引:1,自引:0,他引:1
R B Maccioni J C Vera J Dominguez J Avila 《Archives of biochemistry and biophysics》1989,275(2):568-579
The protein domain responsible for the interaction of tau with tubulin has been identified. Biophysical studies indicated that the synthetic peptide Val187-Gly204 (VRSKIG-STENLKHQPGGG) from the repetitive sequence on tau binds to two sites on the tubulin heterodimer and to one site on each of the microtubule-associated protein-interacting C-terminal tubulin peptides alpha(430-441) and beta(422-434). The binding data showed a relatively stronger interaction of Val187-Gly204 with beta(422-434) as compared to that with alpha(430-441). The interaction of this tau peptide with either alpha or beta tubulin peptides appears to be associated with conformational changes in both the tau and the tubulin peptides. The beta tubulin peptide also appears to induce a structural change of tau fragment Val218-Gly235. Interestingly, tau peptides Val187-Gly204 and Val218-Gly235 induced tubulin self-assembly in a cold-reversible fashion, and incorporated into the assembled polymers. The specificity of the interaction of the tau peptide was supported by the competition of tau protein for the interaction with the tubulin polymer. In addition, the tau peptide appears to contain the principal antigenic determinant(s) recognized by anti-idiotypic antibodies that react with the tubulin binding domains on microtubule-associated proteins. The present findings together with the demonstration of the presence of multiple sites for the binding of the alpha(430-441) and beta(422-434) tubulin fragments to tau, and the existence of repetitive sequences on tau, strongly support the hypothesis that the region of tau defined by the repetitive sequences is involved in its interaction with tubulin. 相似文献
6.
Binding of gossypol to purified tubulin and inhibition of its assembly into microtubules 总被引:1,自引:0,他引:1
Gossypol is a polyphenolic pigment, which is employed as a male antifertility drug. It inhibits, among other reported effects, the growth of cultured mammalian cells, spermiogenesis, flagellar motility in Trypanosoma and sperm, dynein ATPase and the lactate dehydrogenase X (LDH-X) isozyme. We have characterized the non-covalent binding of gossypol to purified calf brain tubulin in 10 mM phosphate buffer, 0.1 mM GTP pH 7.0 at 25 degrees C. Equilibrium measurements were performed by difference spectroscopy. A peak at 435 nm was produced by the perturbation of gossypol light absorption upon binding to tubulin. The experimental isotherm was fitted by 1.96 +/- 0.06 gossypol binding sites per tubulin molecule, with identical apparent equilibrium binding constants of (7.5 +/- 1.1) X 10(4) M-1. The complex formed could be separated from free gossypol by gel chromatography. Binding of gossypol was independent of the presence of 0.1 mM GTP in the buffer. Gossypol did not affect the binding of ligands to the colchicine site. Gossypol interacted with vinblastine but apparently did not bind to the vinblastine sites of tubulin. Gossypol did not displace anilinonaphthalene sulphonate (ANS) bound to tubulin, but caused a strong (fivefold) quenching of its fluorescence. This indicated that gossypol probably binds in the vicinity of the ANS site of tubulin. Gossypol inhibited in vitro microtubule assembly at the same concentration range employed in the binding studies. An increase in the critical protein concentration required for polymerisation was observed, most simply interpreted by a stoichiometric mechanism. Gossypol did not induce any noticeable distortion of the microtubules observed under the electron microscope. This compound constitutes a new tubulin ligand and an inhibitor of microtubule assembly in vitro. 相似文献
7.
Bis-ANS as a specific inhibitor for microtubule-associated protein induced assembly of tubulin. 总被引:2,自引:0,他引:2
5,5'-Bis[8-(phenylamino)-1-naphthalenesulfonate] (bis-ANS), the fluorescent probe which binds to tubulin, inhibits its assembly into microtubules [Horowitz et al. (1984) J. Biol. Chem. 259, 14647-14650]. The results described in this paper demonstrate that bis-ANS is quite distinct from other well-known microtubule inhibitors in its specificity of action. The inhibitory potentials of bis-ANS and its three structural analogues ANS, Prodan [6-propionyl-2-(dimethylamino)naphthalene], and NSA (naphthalenesulfonic acid) have been compared. It is found that they can be arranged in the following order according to their polymerization inhibitory potentials: bis-ANS approximately equal to Prodan much greater than ANS greater than NSA. Interestingly, the naphthalene nucleus is sufficient to cause inhibition of polymerization. Detailed experiments were carried out to examine the mode of assembly inhibition by aminonaphthalenes at the molecular level, using bis-ANS as a representative. It was found that there was little or no effect of bis-ANS on the assembly of tubulin when polymerization was induced by assembly promoters like taxol, DMSO, or glutamate, or on the assembly of subtilisin-digested protein (tubulin S), for all of which half-maximal inhibition could not be achieved even at 120 microM bis-ANS. On the contrary, bis-ANS acts as an inhibitor in the case of MAP- (MAP2 and tau) and poly(L-lysine)-induced assembly of tubulin, with half-maximal inhibitory concentrations ranging from 1.5 to 7.6 microM. Our results place bis-ANS as a novel inhibitor, which seems to specifically inhibit C-termini-mediated assembly. Of all assembly inhibitors known so far, none exhibits such selection.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
Contrasting roles of tau and microtubule-associated protein 2 in the vinblastine-induced aggregation of brain tubulin 总被引:2,自引:0,他引:2
R F Ludue?a A Fellous L McManus M A Jordan J Nunez 《The Journal of biological chemistry》1984,259(20):12890-12898
Two different proteins, tau and microtubule-associated protein 2 (MAP 2), are able to stimulate tubulin polymerization into microtubules in vitro, but it is not certain if both proteins act by the same mechanism. We have examined the effects of tau and MAP 2 on the vinblastine-induced polymerization of tubulin into spiral filaments. In the presence of tau, vinblastine induced extensive aggregation of tubulin as shown by a large increase in turbidity. The increase in turbidity was accompanied by the formation of large numbers of spirals composed of a filament 40-60 A in diameter. The rate and extent of this aggregation into spirals were dependent on the concentrations of tubulin, tau, and vinblastine. Unlike normal microtubule assembly, this type of aggregation was not inhibited by colchicine or podophyllotoxin. In contrast, MAP 2, even at high concentrations, was less effective than tau at promoting the vinblastine-induced increase in turbidity of tubulin. In fact, MAP 2 strongly inhibited the effect of tau. These results indicate that tau and MAP 2 interact differently with the tubulin molecule in the presence of vinblastine and suggest that the two proteins may play different roles in regulating or promoting microtubule assembly. Vinblastine may thus be a useful probe in analyzing the modes of interactions of tau and MAP 2 with tubulin. 相似文献
9.
Bonfils C Bec N Lacroix B Harricane MC Larroque C 《The Journal of biological chemistry》2007,282(8):5570-5581
The microtubule-associated protein TOGp, which belongs to a widely distributed protein family from yeasts to humans, is highly expressed in human tumors and brain tissue. From purified components we have determined the effect of TOGp on thermally induced tubulin association in vitro in the presence of 1 mm GTP and 3.4 m glycerol. Physicochemical parameters describing the mechanism of tubulin polymerization were deduced from the kinetic curves by application of the classical theoretical models of tubulin assembly. We have calculated from the polymerization time curves a range of parameters characteristic of nucleation, elongation, or steady state phase. In addition, the tubulin subunits turnover at microtubule ends was deduced from tubulin GTPase activity. For comparison, parallel experiments were conducted with colchicine and taxol, two drugs active on microtubules and with tau, a structural microtubule-associated protein from brain tissue. TOGp, which decreases the nucleus size and the tenth time of the reaction (the time required to produce 10% of the final amount of polymer), shortens the nucleation phase of microtubule assembly. In addition, TOGp favors microtubule formation by increasing the apparent first order rate constant of elongation. Moreover, TOGp increases the total amount of polymer by decreasing the tubulin critical concentration and by inhibiting depolymerization during the steady state of the reaction. 相似文献
10.
We have isolated, after exhaustive detergent treatments, a 33 kDa tau-related protein isolated from paired helical filaments from Alzheimer's disease patient brains. The N-terminal sequence of the 33 kDa protein begins at residue 71 of the sequence described for human fetal tau protein. This truncated form of tau is not the consequence of the translation of a tau RNA lacking a region at its 5' end, as measured by primer extension analyses, suggesting that the 33 kDa protein must be generated by proteolysis of previously synthesized tau. This tau-related protein has only one blocked cysteine residue and also has a decreased tubulin binding capacity as compared with that of tau protein. 相似文献
11.
A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end 总被引:4,自引:9,他引:4 下载免费PDF全文
We have isolated a protein factor from Xenopus eggs that promotes microtubule assembly in vitro. Assembly promotion was associated with a 215-kD protein after a 1,000-3,000-fold enrichment of activity. The 215-kD protein, termed Xenopus microtubule assembly protein (XMAP), binds to microtubules with a stoichiometry of 0.06 mol/mol tubulin dimer. XMAP is immunologically distinct from the Xenopus homologues to mammalian brain microtubule-associated proteins; however, protein species immunologically related to XMAP with different molecular masses are found in Xenopus neuronal tissues and testis. XMAP is unusual in that it specifically promotes microtubule assembly at the plus-end. At a molar ratio of 0.01 mol XMAP/mol tubulin the assembly rate of the microtubule plus-end is accelerated 8-fold while the assembly rate of the minus-end is increased only 1.8-fold. Under these conditions XMAP promotes a 10-fold increase in the on-rate constant (from 1.4 s-1.microM-1 for microtubules assembled from pure tubulin to 15 s-1.microM-1), and a 10-fold decrease in off-rate constant (from 340 to 34 s-1). Given its stoichiometry in vivo, XMAP must be the major microtubule assembly factor in the Xenopus egg. XMAP is phosphorylated during M-phase of both meiotic and mitotic cycles, suggesting that its activity may be regulated during the cell cycle. 相似文献
12.
Yamamoto H Yamauchi E Taniguchi H Ono T Miyamoto E 《Archives of biochemistry and biophysics》2002,408(2):255-262
The paired helical filaments (PHF) found in Alzheimer's disease (AD) brain are composed mainly of the hyperphosphorylated form of microtubule-associated protein tau (PHF-tau). It is well known that tau is a good in vitro substrate for Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). To establish the phosphorylation sites, the longest human tau (hTau40) was bacterially expressed and phosphorylated by CaM kinase II, followed by digestion with lysyl endoprotease. The digests were subjected to liquid chromatography/mass spectrometry. We found that 5 of 22 identified peptides were phosphorylated. From the tandem mass spectrometry, two phosphorylation sites (serines 262 and 356) were identified in the tubulin binding sites. When tau was phosphorylated by CaM kinase II, the binding of tau to taxol-stabilized microtubules was remarkably impaired. As both serines 262 and 356 are reportedly phosphorylated in PHF-tau, CaM kinase II may be involved in hyperphosphorylation of tau in AD brain. 相似文献
13.
14.
Kinesin from porcine brain was prepared by a procedure based on the strong binding of the protein to microtubules in the presence of sodium fluoride and ATP. The protocol reduces the requirement for taxol and AMP-PNP. The kinesin is active in terms of its ability to move microtubules on glass slides and its ATPase. The ATPase of this kinesin is about 8 nmol/min/mg; it is activated to 19 nmol/min/mg in the presence of microtubules. The relationship between gliding velocity and ATP concentration follows Michaelis-Menten kinetics. Using the motility assay, the maximal velocity is 0.78 micron/sec, and the Km value is 150 microM for ATP. For GTP the corresponding values are 0.38 micron/sec and 1.7 mM. ADP is a competitive inhibitor (Ki = 0.29 mM). Crude preparations of kinesin do not support motility on glass slides, whereas gel-filtered kinesin does. A search for potential inhibitory factors showed that one of them is MAP2; however, its inhibitory effect becomes visible only in certain conditions. MAP2 bound to microtubules does not inhibit kinesin-induced motility. However, when MAP2 and kinesin are preadsorbed to the glass surface independently of microtubules, MAP2 prevents the interaction of kinesin with microtubules, as if it formed a "lawn" that acted as a spacer and thus repelled the MAP-free microtubules or crosslinked the MAP-containing ones. The repelling effect of MAP2 domains (projection or assembly fragments obtained by chymotryptic cleavage) added separately is less pronounced and can be overcome by kinesin. These results reinforce the view of MAP2 as a spacer molecule. 相似文献
15.
Gong CX Liu F Wu G Rossie S Wegiel J Li L Grundke-Iqbal I Iqbal K 《Journal of neurochemistry》2004,88(2):298-310
Protein phosphatase 5 (PP5) is a 58-kDa novel phosphoseryl/phosphothreonyl protein phosphatase. It is ubiquitously expressed in all mammalian tissues examined, with a high level in the brain, but little is known about its physiological substrates. We found that this phosphatase dephosphorylated recombinant tau phosphorylated with cAMP-dependent protein kinase and glycogen synthase kinase-3beta, as well as abnormally hyperphosphorylated tau isolated from brains of patients with Alzheimer's disease. The specific activity of PP5 toward tau was comparable to those reported with other protein substrates examined to date. The PP5 activity toward tau was stimulated by arachidonic acid by 30- to 45-fold. Immunostaining demonstrated that PP5 was primarily cytoplasmic in PC12 cells and in neurons of postmortem human brain tissue. A small pool of PP5 associated with microtubules. Expression of active PP5 in PC12 cells resulted in reduced phosphorylation of tau, suggesting that PP5 can also dephosphorylate tau in cells. These results suggest that PP5 plays a role in the dephosphorylation of tau and might be involved in the molecular pathogenesis of Alzheimer's disease. 相似文献
16.
The novel microtubule-associated protein MAP3 contributes to the in vitro assembly of brain microtubules 总被引:1,自引:0,他引:1
MAP3 is a novel microtubule-associated protein found in brain and a variety of other tissues (Huber, G., Alaimo-Beuret, D., and Matus, A. (1985) J. Cell Biol. 100, 496-507). In this study, monoclonal antibodies were used to assess its influence on the polymerization of brain tubulin. When added to unpolymerized brain microtubules, anti-MAP3 IgG produced a dose-related inhibition of subsequent assembly. Under the same circumstances, nonimmune mouse IgG did not influence either the rate or the extent of tubulin polymerization. We also used immobilized antibodies to deplete brain MAPs selectively in either MAP3 or MAP1. MAP3-depleted MAPs showed a reproducible decrease in activity compared to control preparations that had been exposed to immobilized nonimmune IgG. MAP1-depleted MAPs did not differ significantly in performance from the nonimmune treated controls. We conclude that MAP3 contributes to the net assembly of brain microtubules observed in vitro. This may be particularly relevant in neonatal animals where brain MAP3 is more abundant than in the adult. 相似文献
17.
D Moraga A Rivas-Berrios G Farías M Wallin R B Maccioni 《Biochimica et biophysica acta》1992,1121(1-2):97-103
Estramustine-phosphate (EMP), a phosphorylated conjugate of estradiol and nor-nitrogen mustard binds to microtubule-associated proteins MAP-2 and tau. It was shown that this estramustine derivative inhibits the binding of the C-terminal tubulin peptide beta-(422-434) to both MAP-2 and tau. This tubulin segment constitutes a main binding domain for these microtubule-associated proteins. Interestingly, estramustine-phosphate interacted with the synthetic tau peptides V187-G204 and V218-G235, representing two major repeats within the conserved microtubule-binding domain on tau and also on MAP-2. This observation was corroborated by the inhibitory effects of estramustine-phosphate on the tau peptide-induced tubulin assembly into microtubules. On the other hand, the nonphosphorylated drug estramustine failed to block the MAP peptide-induced assembly, indicating that the negatively charged phosphate moiety of estramustine-phosphate is of importance for its inhibitory effect. These findings suggest that the molecular sites for the action of estramustine-phosphate are located within the microtubule binding domains on tau and MAP-2. 相似文献
18.
Two tubulin variants, isolated from chicken brain and erythrocytes and known to have different peptide maps and electrophoretic properties, are demonstrated to exhibit different assembly properties in vitro: 1) erythrocyte tubulin assembles with greater efficiency (lower critical concentration, greater elongation rate) but exhibits a lower nucleation rate than brain tubulin, and 2) erythrocyte tubulin readily forms oligomers whose presence significantly retards the rate of elongation, suggesting that tubulin oligomers may also be important for determining the rate of assembly and the length of microtubules in erythrocytes. Erythrocyte tubulin isolated by cycles of in vitro assembly-disassembly is also demonstrated to contain a 67-kDa tau factor that greatly enhances microtubule nucleation but has little effect on elongation rates or critical concentration. Immunofluorescence microscopy with tau antibody indicates that tau is specifically associated with marginal band microtubules, suggesting that it may be important for determining microtubule function in vivo. 相似文献
19.
20.
The microtubule-associated protein tau forms a triple-stranded left-hand helical polymer 总被引:2,自引:0,他引:2
G C Ruben K Iqbal I Grundke-Iqbal H M Wisniewski T L Ciardelli J E Johnson 《The Journal of biological chemistry》1991,266(32):22019-22027
High resolution transmission electron microscopy (TEM) has shown that bovine tau are 2.1 +/- 0.2-nm diameter filaments which are triple-stranded left-hand helical structures composed of three 1.0 +/- 0.2-nm strands. The reported amino acid sequence of human and bovine tau have been computer processed to predict secondary structure. Within the constraints imposed by the images, the secondary structure models and other structural information have been used to calculate tau's maximum and minimum length. The length calculations and secondary structure form the basis for image interpretation. This work indicates that each approximately 1.0-nm strand is a tau polypeptide chain and that the approximately 2.1-nm filament is composed of three separate tau chains (tau3). Bovine tau length measurements indicate that tau trimer filaments are generally longer than a fully extended tau monomer. These measurements indicate that each trimer, tau3, is joined with other trimers to form long tau polymers, (tau3)n. An inverse temperature transition has been found in the circular dichroism spectrum of tau indicating that its structure is less ordered below 20 degrees C and more ordered at 37 degrees C. The implications of this phenomenon with respect to tau's temperature-dependent ability to reconstitute microtubules is discussed and a mechanism for the possible abnormal aggregation of tau into neurofibrillary tangles in Alzheimer's disease is proposed. 相似文献