首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this study, we show that compositional differences in grain harvested from genetically modified (GM) maize hybrids derived from near-isogenic trait-positive and trait-negative segregant inbreds are more likely related to backcrossing practices than to the GM trait. To demonstrate this, four paired GM trait-positive (NK603: herbicide tolerance) and trait-negative near-isogenic inbred male lines were generated. These were crossed with two different females (testers) to create a series of trait-positive and trait-negative hybrid variants. The hypothesis was, that compositional variation within the hybrid variants would reflect differences associated with backcrossing practices and provide context to any observed differences between GM and non-GM hybrids. The F1 hybrids, as well as corresponding conventional comparator hybrids, were grown concurrently at four field sites across the United States during the 2013 season. Grain was harvested for compositional analysis; proximates (protein, starch, and oil), amino acids, fatty acids, minerals, tocopherols (α-, δ-, γ-), β-carotene, phytic acid, and raffinose were measured. Statistical analysis showed that within each hybrid tester set, there were very few significant (p < 0.05) differences between the paired trait-positive and trait-negative hybrids or between the conventional comparators and the trait-positive or trait-negative hybrids. Assessments of the magnitudes of differences and variance component analysis highlighted that growing location, and the tester used in hybrid formation, had a markedly greater effect on composition than did the GM trait. Significantly, for each tester set, compositional differences within the trait-positive and trait-negative hybrid variants were greater than differences between the GM and non-GM comparators. Overall, GM trait insertion is not intrinsically a meaningful contributor to compositional variation, and observed differences between GM and non-GM comparators typically reflect incidental changes associated with conventional breeding practices. These results contribute to ongoing discussions on the relevance of negative segregants as comparators in GM assessments.  相似文献   

2.

Genetically modified (GM) maize has been grown and safely consumed on a global scale since its commercialization in 1996. However, questions have been raised about the potential impact that GM maize could have on native maize landraces in Mexico, which is the center of origin and diversity of maize. This research was conducted to evaluate potential changes to maize landraces in an unlikely event of transgene introgression. For this study, two GM traits that confer insect protection and herbicide tolerance in maize (MON 89034 and MON 88017), designated as VT3Pro, were introgressed into two Mexican landraces, Tuxpeño and Tabloncillo. Field trials were conducted across four environments to assess phenotypic characteristics, plant response to stressors, and kernel composition of landraces with and without VT3Pro traits. Furthermore, materials from four backcrossing generations were analyzed for segregation of these GM traits. Generally, no significant differences were observed between landraces with and without VT3Pro traits for the evaluated characteristics and the segregation analysis showed that GM traits, when introgressed into landraces, followed Mendelian principles. These results support the conclusion that, if inadvertently introgressed into landraces, VT3Pro traits are not expected to alter phenotypic or kernel characteristics, plant response to stressors (except for targeted insect protection and herbicide tolerance traits) and would segregate like any endogenous gene. These results should be taken into consideration when discussing benefits and risks associated with commercial production of GM maize hybrids in the centers of origin and diversity of maize.

  相似文献   

3.
The impact of crossing (‘stacking’) genetically modified (GM) events on maize‐grain biochemical composition was compared with the impact of generating nonGM hybrids. The compositional similarity of seven GM stacks containing event DAS‐Ø15Ø7‐1, and their matched nonGM near‐isogenic hybrids (iso‐hybrids) was compared with the compositional similarity of concurrently grown nonGM hybrids and these same iso‐hybrids. Scatter plots were used to visualize comparisons among hybrids and a coefficient of identity (per cent of variation explained by line of identity) was calculated to quantify the relationships within analyte profiles. The composition of GM breeding stacks was more similar to the composition of iso‐hybrids than was the composition of nonGM hybrids. NonGM breeding more strongly influenced crop composition than did transgenesis or stacking of GM events. These findings call into question the value of uniquely requiring composition studies for GM crops, especially for breeding stacks composed of GM events previously found to be compositionally normal.  相似文献   

4.
在玉米单交种育种中 ,鉴定高产杂交种和具有优良特性的自交系是一个重要的问题。研究以 1 7个优良玉米自交系为亲本 ,按照双列杂交配组合 ,利用 RAPD技术分析了 1 7个自交系的多态性以及 RAPD标记与 9个重要农艺性状 (包括产量 )的关系。基于 RAPD标记计算的相似系数聚类将 1 7个自交系分为 5个类群 ,经分析与系谱亲缘关系基本一致。杂交种性状及其特殊配合力与亲本间的遗传距离是高度相关的 ,与聚类前比较 ,聚类后平均遗传距离与平均产量、平均特殊配合力的相关系数显著提高 ,类间平均产量高于类内平均产量。RAPD技术可揭示优良玉米自交系的系谱亲缘关系 ,将自交系划分成不同的类群 ,从而为选择类间自交系杂交 ,进行亲本选配和分子标记辅助育种提供一种方法。  相似文献   

5.
Environmental risk assessment (ERA) of genetically modified (GM) crops is a process to evaluate whether the biotechnology trait(s) in a GM crop may result in increased pest potential or harm to the environment. In this analysis, two GM insect-resistant (IR) herbicide-tolerant maize hybrids (MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6) and one herbicide-tolerant GM hybrid (MON-ØØ6Ø3-6) were compared with conventional maize hybrids of similar genetic backgrounds. Two sets of studies, Experimental Phase and Pilot Phase, were conducted across five ecological regions (ecoregions) in Mexico during 2009–2013, and data were subject to meta-analysis. Results from the Experimental Phase studies, which were used for ERA, indicated that the three GM hybrids were not different from conventional maize for early stand count, days-to-silking, days-to-anthesis, root lodging, stalk lodging, or final stand count. Statistically significant differences were observed for seedling vigor, ear height, plant height, grain moisture, and grain yield, particularly in the IR hybrids; however, none of these phenotypic differences are expected to contribute to a biological or ecological change that would result in an increased pest potential or ecological risk when cultivating these GM hybrids. Overall, results from the Experimental Phase studies are consistent with those from other world regions, confirming that there are no additional risks compared to conventional maize. Results from Pilot Phase studies indicated that, compared to conventional maize hybrids, no differences were detected for the agronomic and phenotypic characteristics measured on the three GM maize hybrids, with the exception of grain moisture and grain yield in the IR hybrids. Since MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6 confer resistance to target insect pests, they are an alternative for farmers in Mexico to protect the crop from insect damage. Additionally, the herbicide tolerance conferred by all three GM hybrids enables more cost-effective weed management.  相似文献   

6.
Genomic alteration is a common phenomenon associated with plant tissue culture, which often encompasses genetic changes and epigenetic modifications (e.g. cytosine methylation). Here, we studied genomic alteration in maize by assessing calli and regenerated plants derived from three inbred lines (M17, J7 and JC) and two pairs of reciprocal F1 hybrids (pair I: M17/J7 and J7/M17 and pair II: M17/JC and JC/M17). By employing two molecular markers, the amplified fragment length polymorphism and methylation‐sensitive amplified polymorphism, we found that both types of genomic alterations occurred in calli and regenerated plants of all the studied maize inbred lines and F1 hybrids, but the extent and pattern of changes varied substantially across the genotypes. Among the three inbred lines, M17 showed markedly higher frequencies of both genetic (from 2.1% to 3.8%) and methylation alterations (from 6.5% to 9.9%, by adding up the various patterns) than the other two lines which showed similar frequencies for both types of alterations (genetic: 0.5–1.8%, methylation: 2.1–3.7%). Of the two F1 hybrid pairs, while pair I showed genetic variation frequencies similar to that of the inbred parent with lower changing frequency and pair II was intermediate of those of the parents, both pairs showed frequencies of methylation alteration more or less intermediate of those of their inbred parental lines. Parent‐of‐origin effects in both genetic and methylation changes were detected in only one of the hybrid pairs (primarily pair II) for a given changing pattern. Statistical testing confirmed the genotypic difference in both genetic and methylation (hypomethylation) alterations among the regenerants. Taken together, it could be concluded that the frequency and pattern of both genetic and cytosine methylation alterations in maize tissue culture were largely genetic context‐dependent traits, but stochasticity also played an important part. F1 hybrids were not significantly more stable than their inbred parental lines under tissue culture conditions.  相似文献   

7.
《农业工程》2022,42(1):63-67
Line × tester set was obtained by crossing 10 inbred lines with 2 testers in maize. 20 F1`s along with 12 parents (10 S6 lines and 2 testers) and two standard white checks (TWC321 and TWC324) were evaluated randomized complete block Design (RCBD) with three replications during summer season 2016 to detect the best new white crosses for the potential comercial crosses. Data were recorded on cob length, ear diameter row no. per ear, no. of kernels per row, 100-kernel weight and grain yield. The results of mean squares showed highly significant differences in the all examined traits. For mean grain yield of the crosses P5 × SC24, P6 × SC21, P6 × SC24, P7 × SC21, P7 × SC24 and P10 × SC21 had significant in all traits and their combined data was higher in case of TWC321 and TWC324.Hence, it could be concluded that these crosses may be useful for improving grain yield of maize. Crosses P1 × SC21, P1 × SC24, P3 × SC24, P5 × SC24, P6 × SC21, P6 × SC24, P7 × SC21 and P7 × SC24 had highest significant and positively higher percentages over check varieties TWC321 and TWC324 for grain yield and some of yield components. These lines were having promising performance which could be used in future maize breeding programs for hybrid production. Based on the overall performance of the hybrids and parental lines, some of the lines could be used as parents of hybrids of maize with high grain yield potential. Thus, these crosses could be commercially exploited after critical evaluation for its superiority in performance as maize hybrids.  相似文献   

8.
Introduction of exotic maize (Zea mays L.) into adapted tropical germplasm may enhance genetic variability and lead to greater progress from selection. The first objective of this study was to determine if yellow endosperm lines derived from adapted × exotic backcrosses contain exotic alleles that are superior to the recurrent adapted parental line for yield and other agronomic traits in tropical environments. Thirteen exotic yellow maize inbred lines were crossed to an adapted orange line (KUSR) and the F1s were backcrossed to KUSR to generate the first backcrosses. Fifty BC1F4 lines derived from these backcrosses and the recurrent parent were crossed to a common inbred tester (L4001) to form testcrosses, which were evaluated at eight environments in Nigeria. Testcrosses of the BC-derived lines differed significantly for grain yield and other agronomic traits. Only two testcrosses yielded significantly less than L4001 × KUSR, with the best 15 testcrosses producing between 289 and 1,056 kg/ha more grain yield than L4001 × KUSR. The best testcrosses were similar to or better than L4001 × KUSR for other agronomic traits. The second objective of this study was to assess the extent of genetic diversity present among the BC-derived lines. We genotyped 46 BC-derived lines including KUSR and L4001 with 10 AFLP primer pairs and found 491 polymorphic fragments. The average allelic diversity of the lines was 0.30 ± 0.01. The genetic distance of each BC-derived line from KUSR ranged between 0.49 and 0.91. The average genetic distance for all pairs of the BC-derived lines was 0.68 ± 0.004, varying from 0.34 to 0.92. The increased grain yield and genetic diversity observed in these studies provide evidence that exotic germplasm can contribute new alleles to expand the genetic base of tropical maize and develop high-yielding hybrids.  相似文献   

9.
玉米骨干自交系黄早四育成于20世纪70年代,具有适应性强、配合力高、株型紧凑、生育期短、灌浆速度快等优点.以其为基础材料选育衍生出数以百计的黄改系,形成我国特有的黄改群(或称塘四平头群)核心种质群.利用黄早四及其衍生系组配的杂交种已累计推广应用数十亿亩,包括目前的主导大品种郑单958、京科968等.该系在我国玉米育种史...  相似文献   

10.
 Commercial maize (Zea mays L.) in the USA has a restricted genetic base as newer hybrids are largely produced from crosses among elite inbred lines representing a small sample (predominantly about 6- to 8-base inbreds) of the Stiff stalk and Lancaster genetic backgrounds. Thus, expansion of genetic diversity in maize has been a continuous challenge to breeders. Tropical germplasm has been viewed as a useable source of diversity, although the integration of tropical germplasm into existing inbred line and hybrid development is laborious. The present study is an evaluation of the potential of tropical germplasm for temperate maize improvement. All possible single-, three-way-, and double-cross hybrids among three largely temperate and three temperate-adapted, all-tropical inbred lines were evaluated in yield-trial tests. Single-cross hybrids containing as much as 50–60% tropical germplasm produced 8.0 t ha-1 of grain yield, equivalent to the mean yield of the commercial check hybrids. On the other hand, three-way and double-cross hybrids with the highest mean yield contained lower amounts of tropical germplasm, 10–19% and 34–44%, respectively. Overall, hybrids containing 10–60% tropical germplasm yielded within the range of the commercial hybrid checks. Hybrids with more than 60% tropical germplasm had significantly lower yields, and 100% tropical hybrids yielded the least among all hybrids evaluated. The results indicate that inbred lines containing tropical germplasm are not only a useful source to expand the genetic diversity of commercial maize hybrids, but they, also are competitive in crosses with temperate materials, producing high-yielding hybrids. These experimental hybrids exhibited good standability (comparable to the commercial check hybrids) but contained 1–2% higher grain moisture, leading to delayed maturity. Recurrent selection procedures are being conducted on derivatives of these materials to extract lines with superior yield, good standability, and reduced grain moisture which can be used for commercial exploitation. Received: 26 January 1998 / Accepted: 14 July 1998  相似文献   

11.
Understanding the genetic bases underlying heterosis is a major issue in maize (Zea mays L.). We extended the North Carolina design III (NCIII) by using three populations of recombinant inbred lines derived from three parental lines belonging to different heterotic pools, crossed with each parental line to obtain nine families of hybrids. A total of 1253 hybrids were evaluated for grain moisture, silking date, plant height, and grain yield. Quantitative trait loci (QTL) mapping was carried out on the six families obtained from crosses to parental lines following the "classical" NCIII method and with a multiparental connected model on the global design, adding the three families obtained from crosses to the nonparental line. Results of the QTL detection highlighted that most of the QTL detected for grain yield displayed apparent overdominance effects and limited differences between heterozygous genotypes, whereas for grain moisture predominance of additive effects was observed. For plant height and silking date results were intermediate. Except for grain yield, most of the QTL identified showed significant additive-by-additive epistatic interactions. High correlation observed between heterosis and the heterozygosity of hybrids at markers confirms the complex genetic basis and the role of dominance in heterosis. An important proportion of QTL detected were located close to the centromeres. We hypothesized that the lower recombination in these regions favors the detection of (i) linked QTL in repulsion phase, leading to apparent overdominance for heterotic traits and (ii) linked QTL in coupling phase, reinforcing apparent additive effects of linked QTL for the other traits.  相似文献   

12.
13.
Summary Isozymes and restriction fragment length polymorphisms (RFLPs) have been proposed for use in varietal identification and selection for agronomic traits. Although the use of isozymes for these purposes has been well documented, evaluation of the efficacy of RFLP technology as applied to crop improvement is far from complete. This investigation was conducted to study the relationship between RFLP-derived genotypes and heterotic patterns of a group of maize (Zea mays L.) inbred lines. A total of 22 inbreds was crossed to four testers (B73, B76, Mo17, and Va26) in combinations that minimized crossing within heterotic groups. Forty-seven single-cross progeny were subsequently evaluated for several agronomic traits (including grain yield and moisture, ear height, and root lodging) over 2–4 consecutive years at two to four Iowa locations in a randomized complete-block design. The inbred lines were subjected to RFLP analysis, which involved 47 genomic clones and the restriction enzymes EcoRI and HindIII. Hybrid RFLP patterns were predicted from their inbred parents. Modified Roger's distances were computed to estimate genetic distance among the inbred lines. Principal component analysis facilitated ascertainment of relative dispersion of the inbreds based on the frequency of variants at specific RFLP loci. Evident associations of variants with genes affecting agronomic traits were identified by principal component regression analysis, in which adjusted hybrid means were regressed on the matrix of hybrid variants frequencies. The hybrid means were adjusted by removing environmental effects, using residuals as dependent variables in the regression analysis. Results from this study suggest that RFLP analysis may be of value in allocating maize inbreds to heterotic groups, but no relationship between RFLP-based genetic distance and hybrid performance was apparent. Principal component regression identified variants potentially linked to genes that control specific agronomic traits.Joint contribution: USDA-ARS and Journal Paper No. J-13590 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011, USA. Projects No. 2818 and 2778  相似文献   

14.
Four genetically modified (GM) maize (Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non‐GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups’ number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non‐GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non‐GM food webs for herbivores were observed. Food webs parameterized based on 2‐year in‐field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non‐target organisms.  相似文献   

15.

Introduction

Past studies on plant metabolomes have highlighted the influence of growing environments and varietal differences in variation of levels of metabolites yet there remains continued interest in evaluating the effect of genetic modification (GM).

Objectives

Here we test the hypothesis that metabolomics differences in grain from maize hybrids derived from a series of GM (NK603, herbicide tolerance) inbreds and corresponding negative segregants can arise from residual genetic variation associated with backcrossing and that the effect of insertion of the GM trait is negligible.

Methods

Four NK603-positive and negative segregant inbred males were crossed with two different females (testers). The resultant hybrids, as well as conventional comparator hybrids, were then grown at three replicated field sites in Illinois, Minnesota, and Nebraska during the 2013 season. Metabolomics data acquisition using gas chromatography–time of flight-mass spectrometry (GC–TOF-MS) allowed the measurement of 367 unique metabolite features in harvested grain, of which 153 were identified with small molecule standards. Multivariate analyses of these data included multi-block principal component analysis and ANOVA-simultaneous component analysis. Univariate analyses of all 153 identified metabolites was conducted based on significance testing (α = 0.05), effect size evaluation (assessing magnitudes of differences), and variance component analysis.

Results

Results demonstrated that the largest effects on metabolomic variation were associated with different growing locations and the female tester. They further demonstrated that differences observed between GM and non-GM comparators, even in stringent tests utilizing near-isogenic positive and negative segregants, can simply reflect minor genomic differences associated with conventional back-crossing practices.

Conclusion

The effect of GM on metabolomics variation was determined to be negligible and supports that there is no scientific rationale for prioritizing GM as a source of variation.
  相似文献   

16.
Selection of recombinant inbred lines (RILs) from elite hybrids is a key method in maize breeding especially in developing countries. The RILs are normally derived by repeated self-pollination and selection. In this study, we first investigated the accuracy of different models in predicting the performance of F1 hybrids between RILs derived from two elite maize inbred lines Zong3 and 87-1, and then compared these models through simulation using a wider range of genetic models. Results indicated that appropriate prediction models depended on genetic architecture, e.g., combined model using breeding value and genome-wide prediction (BV+GWP) has the highest prediction accuracy for high V D/V A ratio (>0.5) traits. Theoretical studies demonstrated that different components of genetic variance were captured by different prediction models, which in turn explained the accuracy of these models in predicting the F1 hybrid performance. Based on genome-wide prediction model (GWP), 114 untested F1 hybrids possibly having higher grain yield than the original F1 hybrid Yuyu22 (the single cross between Zong3 and 87-1) have been identified and recommended for further field test.  相似文献   

17.
18.
Plant phenotypic plasticity describes altered phenotypic performance of an individual when grown in different environments. Exploring genetic architecture underlying plant plasticity variation may help mitigate the detrimental effects of a rapidly changing climate on agriculture, but little research has been done in this area to date. In the present study, we established a population of 976 maize F1 hybrids by crossing 488 diverse inbred lines with two elite testers. Genome-wide association study identified hundreds of quantitative trait loci associated with phenotypic plasticity variation across diverse F1 hybrids, the majority of which contributed very little variance, in accordance with the polygenic nature of these traits. We identified several quantitative trait locus regions that may have been selected during the tropical-temperate adaptation process. We also observed heterosis in terms of phenotypic plasticity, in addition to the traditional genetic value differences measured between hybrid and inbred lines, and the pattern of which was affected by genetic background. Our results demonstrate a landscape of phenotypic plasticity in maize, which will aid in the understanding of its genetic architecture, its contribution to adaptation and heterosis, and how it may be exploited for future maize breeding in a rapidly changing environment.  相似文献   

19.
Traditional genetic studies focus on identifying genetic variants associated with the mean difference in a quantitative trait. Because genetic variants also influence phenotypic variation via heterogeneity, we conducted a variance‐heterogeneity genome‐wide association study to examine the contribution of variance heterogeneity to oil‐related quantitative traits. We identified 79 unique variance‐controlling single nucleotide polymorphisms (vSNPs) from the sequences of 77 candidate variance‐heterogeneity genes for 21 oil‐related traits using the Levene test (P < 1.0 × 10?5). About 30% of the candidate genes encode enzymes that work in lipid metabolic pathways, most of which define clear expression variance quantitative trait loci. Of the vSNPs specifically associated with the genetic variance heterogeneity of oil concentration, 89% can be explained by additional linked mean‐effects genetic variants. Furthermore, we demonstrated that gene × gene interactions play important roles in the formation of variance heterogeneity for fatty acid compositional traits. The interaction pattern was validated for one gene pair (GRMZM2G035341 and GRMZM2G152328) using yeast two‐hybrid and bimolecular fluorescent complementation analyses. Our findings have implications for uncovering the genetic basis of hidden additive genetic effects and epistatic interaction effects, and we indicate opportunities to stabilize efficient breeding and selection of high‐oil maize (Zea mays L.).  相似文献   

20.
QTL mapping with near-isogenic lines in maize   总被引:2,自引:0,他引:2  
A set of 89 near-isogenic lines (NILs) of maize was created using marker-assisted selection. Nineteen genomic regions, identified by restriction fragment length polymorphism loci and chosen to represent portions of all ten maize chromosomes, were introgressed by backcrossing three generations from donor line Tx303 into the B73 genetic background. NILs were genotyped at an additional 128 simple sequence repeat loci to estimate the size of introgressions and the amount of background introgression. Tx303 introgressions ranged in size from 10 to 150 cM, with an average of 60 cM. Across all NILs, 89% of the Tx303 genome is represented in targeted and background introgressions. The average proportion of background introgression was 2.5% (range 0–15%), significantly lower than the expected value of 9.4% for third backcross generation lines developed without marker-assisted selection. The NILs were grown in replicated field evaluations in two years to map QTLs for flowering time traits. A parallel experiment of testcrosses of each NIL to the unrelated inbred, Mo17, was conducted in the same environments to map QTLs in NIL testcross hybrids. QTLs affecting days to anthesis, days to silking, and anthesis-silk interval were detected in both inbreds and hybrids in both environments. The testing environments differed dramatically for drought stress, and different sets of QTLs were detected across environments. Furthermore, QTLs detected in inbreds were typically different from QTLs detected in hybrids, demonstrating the genetic complexity of flowering time. NILs can serve as a valuable genetic mapping resource for maize breeders and geneticists. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号