共查询到20条相似文献,搜索用时 0 毫秒
1.
Identification of a Vitis vinifera endo‐β‐1,3‐glucanase with antimicrobial activity against Plasmopara viticola 下载免费PDF全文
Pere Mestre Gautier Arista Marie‐Christine Piron Camille Rustenholz Christophe Ritzenthaler Didier Merdinoglu Jean‐François Chich 《Molecular Plant Pathology》2017,18(5):708-719
Inducible plant defences against pathogens are stimulated by infections and comprise several classes of pathogenesis‐related (PR) proteins. Endo‐β‐1,3‐glucanases (EGases) belong to the PR‐2 class and their expression is induced by many pathogenic fungi and oomycetes, suggesting that EGases play a role in the hydrolysis of pathogen cell walls. However, reports of a direct effect of EGases on cell walls of plant pathogens are scarce. Here, we characterized three EGases from Vitis vinifera whose expression is induced during infection by Plasmopara viticola, the causal agent of downy mildew. Recombinant proteins were expressed in Escherichia coli. The enzymatic characteristics of these three enzymes were measured in vitro and in planta. A functional assay performed in vitro on germinated P. viticola spores revealed a strong anti‐P. viticola activity for EGase3, which strikingly was that with the lowest in vitro catalytic efficiency. To our knowledge, this work shows, for the first time, the direct effect against downy mildew of EGases of the PR‐2 family from Vitis. 相似文献
2.
Heterologous expression and periplasmic secretion of an antifungal Bacillus amyloliquefaciensBLB369 endo‐β‐1,3‐1,4‐glucanase in Escherichia coli 下载免费PDF全文
Imen Zalila‐Kolsi Sameh Sellami Slim Tounsi Kaïs Jamoussi 《Journal of Phytopathology》2018,166(1):28-33
The endo‐β‐1,3‐1,4‐glucanases are glycoside hydrolases involved in the enzymatic depolymerization of 1,3‐1,4 β‐glucans and showed an antifungal activity against some fungi. Bacillus amyloliquefaciensBLB369 has a high antagonistic activity against phytopathogenic fungi. Its glu369 full‐coding sequence of the endo‐β‐1,3‐1,4‐glucanase gene (732 bp) was sequenced, cloned and successfully expressed in Escherichia coli Top10. The encoded protein (243 amino acids) has a calculated molecular mass of 27.3 kDa. To simplify the purification procedure, the glu369 coding sequence was cloned into the vector pKJD4. The produced OmpA‐His‐Glu369 harboured OmpA signal sequence for E. coli periplasmic localization and followed by a 6His residues for its purification. The purified His‐tagged proteins revealed two bands on SDS‐PAGE analysis with molecular masses of about 30.5 (His‐Glu369) and 32.5 kDa (OmpA‐His‐Glu369). They had the ability to inhibit the growth of phytopathogenic fungus Alternaria alternata. These favourable properties make the endo‐β‐1,3‐1,4‐glucanase a good candidate for biotechnological applications. 相似文献
3.
4.
5.
6.
Silicon amendment to rice plants contributes to reduced feeding in a phloem‐sucking insect through modulation of callose deposition 下载免费PDF全文
Silicon (Si) uptake by Poaceae plants has beneficial effects on herbivore defense. Increased plant physical barrier and altered herbivorous feeding behaviors are documented to reduce herbivorous arthropod feeding and contribute to enhanced plant defense. Here, we show that Si amendment to rice (Oryza sativa) plants contributes to reduced feeding in a phloem feeder, the brown planthopper (Nilaparvata lugens, BPH), through modulation of callose deposition. We associated the temporal dynamics of BPH feeding with callose deposition on sieve plates and further with callose synthase and hydrolase gene expression in plants amended with Si. Biological assays revealed that BPH feeding was lower in Si‐amended than in nonamended plants in the early stages post‐BPH infestation. Histological observation showed that BPH infestation triggered fast and strong callose deposition in Si‐amended plants compared with nonamended plants. Analysis using qRT‐PCR revealed that expression of the callose synthase gene OsGSL1 was up‐regulated more and that the callose hydrolase (β‐1,3‐glucanase) gene Gns5 was up‐regulated less in Si‐amended than in nonamended plants during the initial stages of BPH infestation. These dynamic expression levels of OsGSL1 and Gns5 in response to BPH infestation correspond to callose deposition patterns in Si‐amended versus nonamended plants. It is demonstrated here that BPH infestation triggers differential gene expression associated with callose synthesis and hydrolysis in Si‐amended and nonamended rice plants, which allows callose to be deposited more on sieve tubes and sieve tube occlusions to be maintained more thus contributing to reduced BPH feeding on Si‐amended plants. 相似文献
7.
Julia Jansing Markus Sack Sruthy Maria Augustine Rainer Fischer Luisa Bortesi 《Plant biotechnology journal》2019,17(2):350-361
Plants offer fast, flexible and easily scalable alternative platforms for the production of pharmaceutical proteins, but differences between plant and mammalian N‐linked glycans, including the presence of β‐1,2‐xylose and core α‐1,3‐fucose residues in plants, can affect the activity, potency and immunogenicity of plant‐derived proteins. Nicotiana benthamiana is widely used for the transient expression of recombinant proteins so it is desirable to modify the endogenous N‐glycosylation machinery to allow the synthesis of complex N‐glycans lacking β‐1,2‐xylose and core α‐1,3‐fucose. Here, we used multiplex CRISPR/Cas9 genome editing to generate N. benthamiana production lines deficient in plant‐specific α‐1,3‐fucosyltransferase and β‐1,2‐xylosyltransferase activity, reflecting the mutation of six different genes. We confirmed the functional gene knockouts by Sanger sequencing and mass spectrometry‐based N‐glycan analysis of endogenous proteins and the recombinant monoclonal antibody 2G12. Furthermore, we compared the CD64‐binding affinity of 2G12 glycovariants produced in wild‐type N. benthamiana, the newly generated FX‐KO line, and Chinese hamster ovary (CHO) cells, confirming that the glyco‐engineered antibody performed as well as its CHO‐produced counterpart. 相似文献
8.
Golgi α1,4‐fucosyltransferase of Arabidopsis thaliana partially localizes at the nuclear envelope 下载免费PDF全文
Stephan Rips Manuel Frank Annegret Elting Jan Niklas Offenborn Antje von Schaewen 《Traffic (Copenhagen, Denmark)》2017,18(10):646-657
We analyzed plant‐derived α1,4‐fucosyltransferase (FucTc) homologs by reporter fusions and focused on representatives of the Brassicaceae and Solanaceae. Arabidopsis thaliana AtFucTc‐green fluorescent protein (GFP) or tomato LeFucTc‐GFP restored Lewis‐a formation in a fuctc mutant, confirming functionality in the trans‐Golgi. AtFucTc‐GFP partly accumulated at the nuclear envelope (NE) not observed for other homologs or truncated AtFucTc lacking the N‐terminus or catalytic domain. Analysis of At/LeFucTc‐GFP swap constructs with exchanged cytosolic, transmembrane and stalk (CTS), or only the CT regions, revealed that sorting information resides in the membrane anchor. Other domains of AtFuctc also contribute, since amino‐acid changes in the CT region strongly reduced but did not abolish NE localization. By contrast, two N‐terminal GFP copies did, indicating localization at the inner nuclear membrane (INM). Tunicamycin treatment of AtFucTc‐GFP abolished NE localization and enhanced overlap with an endosomal marker, suggesting involvement of N‐glycosylation. Yet neither expression in protoplasts of Arabidopsis N‐glycosylation mutants nor elimination of the N‐glycosylation site in AtFucTc prevented perinuclear accumulation. Disruption of endoplasmic reticulum (ER)‐to‐Golgi transport by co‐expression of Sar1(H74L) trapped tunicamycin‐released AtFucTc‐GFP in the ER, however, without NE localization. Since recovery after tunicamycin‐washout required de novo‐protein synthesis, our analyses suggest that AtFucTc localizes to the NE/INM due to interaction with an unknown (glyco)protein. 相似文献
9.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation. 相似文献
10.
β‐1,3‐glucan recognition proteins (βGRPs) function as pattern recognition receptors in the innate immune response against invading pathogens. In the present study, we obtain full‐length cDNA clones for two novel putative βGRPs: TpβGRPc and TpβGRPd from the ghost moth Thitarodes pui (Lepidoptera: Hepialidae). Phylogenetic analysis shows a small distinct lineage, βGRP clade 4, consisting of T. pui βGRPs including TpβGRPa and TpβGRPb that have been identified previously. TpβGRPc and TpβGRPd, comprising 488 and 229 amino acids, have calculated molecular masses of 52 596 and 24 589 Da, respectively. TpβGRPc is 85.52% identical in sequence to TpβGRPa. TpβGRPb and TpβGRPd share the same deletion start site located at the conserved residue Pro 43, although TpβGRPd exhibits a much larger deletion of up to approximately 270 residues covering both the N‐ and C‐terminal regions. Affinity purification, associated with subsequent peptide sequencing, confirms the constitutive occurrence of TpβGRPa and TpβGRPc of similar size (approximately 65 kDa) in sixth‐instar larval haemolymph. These two βGRPs show clear binding affinities to curdlan, an insoluble β‐1,3‐glucan. A quantitative real‐time polymerase chain reaction analysis reveals the high‐level constitutive expression of TpβGRPc and TpβGRPd in the fat body of mid‐instar larvae, which are found to be susceptible to fungal pathogens in field investigations. Remarkable induction of both TpβGRPs occurs in response to haemocoelic challenge with entomopathogenic fungus Beauveria bassiana. The results of the present study suggest that TpβGRPs may contribute to the detection and control of fungal infections. 相似文献
11.
Christian Starkenmann Fabienne Mayenzet Robert Brauchli Myriam Troccaz 《化学与生物多样性》2013,10(12):2197-2208
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide. 相似文献
12.
The stress response neuropeptide CRF increases amyloid‐β production by regulating γ‐secretase activity 下载免费PDF全文
Hyo‐Jin Park Yong Ran Joo In Jung Oliver Holmes Ashleigh R Price Lisa Smithson Carolina Ceballos‐Diaz Chul Han Michael S Wolfe Yehia Daaka Andrey E Ryabinin Seong‐Hun Kim Richard L Hauger Todd E Golde Kevin M Felsenstein 《The EMBO journal》2015,34(12):1674-1686
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase. 相似文献
13.
M. Szilágyi N‐J. Kwon C. Dorogi I. Pócsi J‐H. Yu T. Emri 《Journal of applied microbiology》2010,109(5):1498-1508
Aims: To elucidate the roles of the β‐1,3‐endoglucanase EngA in autolysis of the filamentous fungus Aspergillus nidulans and to identify the common regulatory elements of autolytic hydrolases. Methods and Results: A β‐1,3‐endoglucanase was purified from carbon‐starving cultures of A. nidulans. This enzyme is found to be encoded by the engA gene (locus ID: AN0472.3). Functional and gene‐expression studies demonstrated that EngA is involved in the autolytic cell wall degradation resulting from carbon starvation of the fungus. Moreover, regulation of engA is found to be dependent on the FluG/BrlA asexual sporulation signalling pathway in submerged culture. The deletion of either engA or chiB (encoding an endochitinase) caused highly reduced production of hydrolases in general. Conclusions: The β‐1,3‐endoglucanase EngA plays a pivotal role in fungal autolysis, and activities of both EngA and ChiB are necessary to orchestrate the expression of autolytic hydrolases. The production of cell wall–degrading enzymes was coordinately controlled in a highly sophisticated and complex manner. Significance and Impact of the Study: No information was available on the autolytic glucanase(s) of the euascomycete A. nidulans. This study demonstrates that EngA is a key element in fungal autolysis, and normal activities of both EngA and ChiB are crucial for balanced production of hydrolases. 相似文献
14.
Bárbara Lara‐Chacón Mario Bermúdez de León Daniel Leocadio Pablo Gómez Lizeth Fuentes‐Mera Ivette Martínez‐Vieyra Arturo Ortega David A. Jans Bulmaro Cisneros 《Journal of cellular biochemistry》2010,110(3):706-717
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
15.
Jinyoung Son Misun Kim Ilo Jou Kyoung Chan Park Hee Young Kang 《Pigment cell & melanoma research》2014,27(2):201-208
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes. 相似文献
16.
Sinéad Lordan Nora M. O'Brien John J. Mackrill 《Journal of biochemical and molecular toxicology》2009,23(5):324-332
Oxysterols, such as 7β‐hydroxy‐cholesterol (7β‐OH) and cholesterol‐5β,6β‐epoxide (β‐epoxide), may have a central role in promoting atherogenesis. This is thought to be predominantly due to their ability to induce apoptosis in cells of the vascular wall and in monocytes/macrophages. Although there has been extensive research regarding the mechanisms through which oxysterols induce apoptosis, much remains to be clarified. Given that experimental evidence has long associated alterations of calcium (Ca2+) homeostasis to apoptotic cell death, the aim of the present study was to determine the influence of intracellular Ca2+ changes on apoptosis induced by 7β‐OH and β‐epoxide. Ca2+ responses in differentiated U937 cells were assessed by epifluorescence video microscopy, using the ratiometric dye fura‐2. Over 15‐min exposure of differentiated U937 cells to 30 μM of 7β‐OH induced a slow but significant rise in fura‐2 ratio. The Ca2+ channel blocker nifedipine and the chelating agent EGTA blocked the increase in cytoplasmic Ca2+. Moreover, dihydropyridine (DHP) binding sites identified with BODIPY‐FLX‐DHP were blocked following pretreatment with nifedipine, indicating that the influx of Ca2+ occurred through L‐type channels. However, following long‐term incubation with 7β‐OH, elevated levels of cytoplasmic Ca2+ were not maintained and nifedipine did not provide protection against apoptotic cell death. Our results indicate that the increase in Ca2+ may be an initial trigger of 7β‐OH–induced apoptosis, but following chronic exposure to the oxysterol, the influence of Ca2+ on apoptotic cell death appears to be less significant. In contrast, Ca2+ did not appear to be involved in β‐epoxide–induced apoptosis. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:324–332, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20295 相似文献
17.
Bozidar Šantek Michael Felski Karl Friehs Martin Lotz Erwin Flaschel 《Engineering in Life Science》2010,10(2):165-170
Euglena gracilis is shown to be able to grow on potato liquor as the main medium component leading to an interesting biotechnological product represented by paramylon – a β‐1,3‐glucan – and, at the same time, revaluating an otherwise annoying waste stream of the potato‐starch industry. Paramylon mass fractions of about 75% are obtained for biomass concentrations of 15 g/L during simple batch cultivation under heterotrophic conditions. Supplementation of the growth medium with glucose and the vitamins B1 and B12 are shown to improve growth rate as well as paramylon content. E. gracilis grows best at about 27.5°C without requiring pH control. 相似文献
18.
19.
Zihao Teng Yan Guo Xingqi Liu Jian Zhang Xiaodi Niu Qinlei Yu Xuming Deng Jianfeng Wang 《Journal of cellular and molecular medicine》2019,23(10):6955-6964
Metallo‐β‐lactamases (MBLs) are some of the best known β‐lactamases produced by common Gram‐positive and Gram‐negative pathogens and are crucial factors in the rise of bacterial resistance against β‐lactam antibiotics. Although many types of β‐lactamase inhibitors have been successfully developed and used in clinical settings, no MBL inhibitors have been identified to date. Nitrocefin, checkerboard and time‐kill assays were used to examine the enzyme behaviour in vitro. Molecular docking calculation, molecular dynamics simulation, calculation of the binding free energy and ligand‐residue interaction decomposition were used for mechanistic research. The behaviour of the enzymes in vivo was investigated by a mouse infection experiment. We showed that theaflavin‐3,3´‐digallate (TFDG), a natural compound lacking antibacterial activities, can inhibit the hydrolysis of MBLs. In the checkerboard and time‐kill assays, we observed a synergistic effect of TFDG with β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus BAA1717. Molecular dynamics simulations were used to identify the mechanism of the inhibition of MBLs by TFDG, and we observed that the hydrolysis activity of the MBLs was restricted by the binding of TFDG to Gln242 and Ser369. Furthermore, the combination of TFDG with β‐lactam antibiotics showed effective protection in a mouse Staphylococcus aureus pneumonia model. These findings suggest that TFDG can effectively inhibit the hydrolysis activity of MBLs and enhance the antibacterial activity of β‐lactam antibiotics against pathogens in vitro and in vivo. 相似文献