首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
A 13C/12C mass spectrometer was interfaced with a open gas exchange system including four growth chambers to investigate CO2 exchange components of perennial ryegrass (Lolium perenne L.) stands. Chambers were fed with air containing CO2 with known δ13C (δCΟ2?2.6 or ?46.8‰). The system did not fractionate C isotopes and no extraneous CO2 leaked into chambers. The on‐line 13C discrimination (Δ) of ryegrass stands in light was independent of δCΟ2 when δCΟ2 was constant. The δ of CO2 exchanged by the stands in light (δNd) and darkness (δRn) differed by 0.7‰, suggesting some Δ in dark respiration at the stand‐level. However, Δ decreased by ~ 10‰ when δCΟ2 was switched from ?46.8 to ?2.5‰, and increased by ~ 10‰ following a shift from ?2.6 to ?46.7‰ due to isotopic disequilibria between photosynthetic and respiratory fluxes. Isotopic imbalances were used to assess (non‐photorespiratory) respiration in light and the replacement of the respiratory substrate pool(s) by new photosynthate. Respiration was partially inhibited by light, but increased during the light period and decreased in darkness, in association with temperature changes. The labelling kinetics of respiratory CO2 indicated the existence of two major respiratory substrate pools: a fast pool which was exchanged within hours, and a slow pool accounting for ~ 60% of total respiration and having a mean residence time of 3.6 d.  相似文献   

2.
Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas‐exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas‐exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2 (ca ? ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas‐exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas‐exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas‐exchange responses to ca. To assess leaf gas‐exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (?) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca‐induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca ? ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water‐conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.  相似文献   

3.
Effects of the arbuscular mycorrhizal fungus (AMF) Glomus hoi on the carbon economy of perennial ryegrass (Lolium perenne) were investigated by comparing nonmycorrhizal and mycorrhizal plants of the same size, morphology and phosphorus status. Plants were grown in the presence of CO2 sources with different C isotope composition (delta13C -1 or -44). Relative respiration and gross photosynthesis rates, and belowground allocation of C assimilated during one light period ('new C'), as well as its contribution to respiration, were quantified by the concerted use of 13CO2/12CO2 steady-state labelling and 13CO2/12CO2 gas-exchange techniques. AMF (G. hoi) enhanced the relative respiration rate of the root + soil system by 16%, inducing an extra C flow amounting to 3% of daily gross photosynthesis. Total C flow into AMF growth and respiration was estimated at < 8% of daily gross photosynthesis. This was associated with a greater amount of new C allocated belowground and respired in mycorrhizal plants. AMF colonization affected the sources supplying belowground respiration, indicating a greater importance of plant C stores in supplying respiration and/or the participation of storage pools within fungal tissues. When ontogenetic and nutritional effects were accounted for, AMF increased belowground C costs, which were not compensated by increased photosynthesis rates. Therefore the instantaneous relative growth rate was lower in mycorrhizal plants.  相似文献   

4.
A combined stomatal–photosynthesis model was extended to simulate the effects of ozone exposure on leaf photosynthesis and leaf duration in relation to CO2. We assume that ozone has a short‐term and a long‐term effect on the Rubisco‐limited rate of photosynthesis, Ac. Elevated CO2 counteracts ozone damage via stomatal closure. Ozone is detoxified at uptake rates below a threshold value above which Ac decreases linearly with the rate of ozone uptake. Reduction in Ac is transient and depends on leaf age. Leaf duration decreases depending on accumulated ozone uptake. This approach is introduced into the mechanistic crop simulation model AFRCWHEAT2. The derived model, AFRCWHEAT2‐O3, is used to test the capability of these assumptions to explain responses at the plant and crop level. Simulations of short‐term and long‐term responses of leaf photosynthesis, leaf duration and plant and crop growth to ozone exposure in response to CO2 are analysed and compared with experimental data derived from the literature. The model successfully reproduced published responses of leaf photosynthesis, leaf duration, radiation use efficiency and final biomass of wheat to elevated ozone and CO2. However, simulations were unsatisfactory for cumulative radiation interception which had some impact on the accuracy of predictions of final biomass. There were responses of leaf‐area index to CO2 and ozone as a result of effects on tillering which were not accounted for in the present model. We suggest that some model assumptions need to be tested, or analysed further to improve the mechanistic understanding of the combined effects of changes in ozone and CO2 concentrations on leaf photosynthesis and senescence. We conclude that research is particularly needed to improve the understanding of leaf‐area dynamics in response to ozone exposure and elevated CO2.  相似文献   

5.
Chloride (Cl?) has been recently described as a beneficial macronutrient, playing specific roles in promoting plant growth and water‐use efficiency (WUE). However, it is still unclear how Cl? could be beneficial, especially in comparison with nitrate (NO3?), an essential source of nitrogen that shares with Cl? similar physical and osmotic properties, as well as common transport mechanisms. In tobacco plants, macronutrient levels of Cl? specifically reduce stomatal conductance (gs) without a concomitant reduction in the net photosynthesis rate (AN). As stomata‐mediated water loss through transpiration is inherent in the need of C3 plants to capture CO2, simultaneous increase in photosynthesis and WUE is of great relevance to achieve a sustainable increase in C3 crop productivity. Our results showed that Cl?‐mediated stimulation of larger leaf cells leads to a reduction in stomatal density, which in turn reduces gs and water consumption. Conversely, Cl? improves mesophyll diffusion conductance to CO2 (gm) and photosynthetic performance due to a higher surface area of chloroplasts exposed to the intercellular airspace of mesophyll cells, possibly as a consequence of the stimulation of chloroplast biogenesis. A key finding of this study is the simultaneous improvement of AN and WUE due to macronutrient Cl? nutrition. This work identifies relevant and specific functions in which Cl? participates as a beneficial macronutrient for higher plants, uncovering a sustainable approach to improve crop yield.  相似文献   

6.
Northern terrestrial ecosystems have shown global warming‐induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO2 and 13C/12C seasonality. Here, we use four CO2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO2 and 13C/12C seasonality. Since the 1960s, the only significant long‐term trend of CO2 and 13C/12C seasonality was observed at the northern most station, Alert, where the spring CO2 drawdown dates advanced by 0.65 ± 0.55 days yr?1, contributing to a nonsignificant increase in length of the CO2 uptake period (0.74 ± 0.67 days yr?1). For Point Barrow station, vegetation phenology changes in well‐watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13C/12C seasonality while the CO2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13C depleted plant materials cancels out the 12C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming‐induced increases both in photosynthesis and respiration contribute to the long‐term stability of CO2 and 13C/12C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak‐to‐through CO2 amplitude. As the relative magnitude of the increased photosynthesis in summer months is more than the increased respiration in dormant months, we have the increased overall carbon uptake rates in the northern ecosystems.  相似文献   

7.
Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO2 concentration ([CO2]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high‐yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO2] (A‐CO2 and E‐CO2, respectively) via leaf ecophysiological parameters derived from a free‐air CO2 enrichment (FACE) experiment. Takanari had 4%–5% higher evapotranspiration than Koshihikari under both A‐CO2 and E‐CO2, and E‐CO2 decreased evapotranspiration of both varieties by 4%–6%. Therefore, if Takanari was cultivated under future [CO2] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO2] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%–40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high‐stomatal conductance can play a key role in enhancing productivity and moderating heat‐induced damage to grain quality in the coming decades, without significantly increasing crop water use.  相似文献   

8.
Abstract Shifts in ?13C of the graminaceous C3 halophyte Puccinellia nuttalliana (Schultes) Hitch. can be induced by salinization. To investigate this phenomenon, three approaches were taken: assay of carboxylases, CO2-enrichment studies, and gas exchange analysis. Although ribulose-1,5-bisphosphate carboxylase activity decreased with salinity, phosphoenolpyruvate carboxylase activity did not increase and its levels were not atypical of C3 plants. When plants were grown at four NaCl concentrations under atmospheres of 310 and 1300 cm3 m?3 CO2, the CO2-enrichment enhanced the effects of salinity on ?13C. This is consistent with a biophysical explanation for salt-induced shifts in ?13C, whereby there is a steepening of the CO2 diffusion gradient into the leaf. Gas exchange analysis indicated that intercellular CO2 concentrations were depressed in the leaves of salt-affected plants. This resulted from a greatly decreased stomatal conductance coupled with only small effects on intrinsic photosynthetic capacity. Water-use efficiency was enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号