首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

Background and Aims

Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant.

Methods

A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (SL), mesophyll (ML), biochemical (BL) and light (LL) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes.

Key Results

In the virtual cucumber canopy, BL and LL were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (SL + ML) contributed <15 % to total limitation. Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55 %.

Conclusions

Based on the results, maintaining biochemical capacity of the middle–lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to provide insights into the influences of horticultural practices on canopy photosynthesis and the design of optimal crop canopies.  相似文献   

2.
Gas exchange measurements were carried out on ash and oak trees in a forest plantation during three whole growing seasons characterized by different water availability (2001, 2002 and 2003). A quantitative limitation analysis was applied to estimate the effects of drought and leaf ontogeny on stomatal (SL) and non-stomatal limitations (NSL) to light-saturated net photosynthesis (Amax), relative to the seasonal maximum rates obtained under conditions of optimal soil water content. Furthermore, based on combined gas exchange and chlorophyll fluorescence measurements, NSL was partitioned into a diffusive (due to a decrease in mesophyll conductance, MCL) and a biochemical component (due to a decrease in carboxylation capacity, BL). During the wettest year (2002), the seasonal pattern of both Amax and stomatal conductance (gsw) was characterized in both species by a rapid increase during spring and a slight decline over the summer. However, with a moderate (year 2001) or a severe (year 2003) water stress, the summer decline of Amax and gsw was more pronounced and increased with drought intensity (30–40% in 2001, 60–75% in 2003). The limitation analysis showed that during the spring and the autumn periods SL, MCL and BL were of similar magnitude. By contrast, from the summer data it emerged that all the limitations increased with drought intensity, but their relative contribution changed. At mild to moderate water stress (corresponding to values of gsw > 100 mmol H2O m−2 s−1) about two-thirds of the decline in Amax was attributable to SL. However, with increasing drought intensity, NSL increased more than SL and nearly equalled it when the stress was very severe (i.e. with gsw < 60 mmol H2O m−2 s−1). Within NSL, MCL represented the main component, except at the most severe water stress levels when it was equalled by BL. It is concluded that diffusional limitations (i.e. SL + MCL) largely affect net assimilation during most of the year, whereas biochemical limitations are quantitatively important only during leaf development and senescence or with severe droughts.  相似文献   

3.
Under constant salinity we analysed the leaf characteristics of Laguncularia racemosa (L.) Gaertn. in combination with gas exchange and carbon isotopic composition to estimate leaf water-use efficiency (WUE) and potential nitrogen-use efficiency (NUE). NaCl was not added to the control plants and the others were maintained at salinities of 15 and 30 ‰ (S0, S15, and S30, respectively). Leaf succulence, sodium (Na), nitrogen (N), and chlorophyll (Chl) contents increased under salinity. Salinity had a negative impact on net photosynthetic rate (P N) and stomatal conductance (g s) at high and moderated irradiances. Potential NUE declined significantly (p<0.05) with salinity by 37 and 58 % at S15 and S30, respectively, compared to S0 plants. Conversely, compared to S0 plants, P N/g s increased under saline conditions by 12 % (S15) and 50 % (S30). Thus, WUE inferred from P N/g s was consistent with salinity improved short-term WUE. Long-term leaf WUE was also enhanced by salinity as suggested by significantly increased leaf δ13C with salinity. Improved WUE under salinity explains the eco-physiological success of mangrove species under increasing salinity. Conversely, decline in NUE may pose a problem for L. racemosa under hyper-saline environments regardless of N availability.  相似文献   

4.
A. S?ber 《Photosynthetica》1997,34(4):599-603
A positive correlation was found between steady state values of hydraulic (L pA) and stomatal conductance (g s) of French bean leaves: both were lower in the dark than in the light and lower in water-deficient plants than in the well-watered ones. The relative rate of stomatal opening after a pressure rise in the xylem was also positively related to L pA. The L pA and g s were both related to the maximal photosynthetic rate at saturating CO2 concentrations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Global climate change is expected to result in more frequent and intense droughts in the Mediterranean region. To understand forest response to severe drought, we used a mobile rainfall shelter to examine the impact of spring and autumn rainfall exclusion on stomatal (SL) and non‐stomatal (NSL) limitations of photosynthesis in a Quercus ilex ecosystem. Spring rainfall exclusion, carried out during increasing atmospheric demand and leaf development, had a larger impact on photosynthesis than autumn exclusion, conducted at a time of mature foliage and decreasing vapour pressure deficit. The relative importance of NSL increased with drought intensity. SL and NSL were equal once total limitation (TL) reached 60%, but NSL greatly exceeded SL during severe drought, with 76% NSL partitioned equally between mesophyll conductance (MCL) and biochemical (BL) limitations when TL reached 100%. Rainfall exclusion altered the relationship between leaf water potential and photosynthesis. In response to severe mid‐summer drought stress, An and Vcmax were 75% and 72% lower in the spring exclusion plot than in the control plot at the same pre‐dawn leaf water potential. Our results revealed changes in the relationship between photosynthetic parameters and water stress that are not currently included in drought parameterizations for modelling applications.  相似文献   

6.
邢红爽  乌佳美  陈健  史作民 《生态学报》2023,43(12):5186-5199
随着全球气候变化的加剧,陆地生态系统中植物光合作用限制影响程度的增加已成为降低全球植被净初级生产力的主要因素。系统了解植物光合作用限制因素是科学评估植被生产力的重要前提,也是缓解植物光合作用限制,增加植物光合碳同化能力的先决条件。对植物光合作用限制因素进行了系统解析,分析了光合作用三种限制因素生化限制(Biochemical limitation,lb)、气孔限制(Stomatal limitation,ls)、叶肉限制(Mesophyll limitation,lm)的环境响应,重点讨论了叶肉限制及其影响机理,述评了光合作用限制定量分析方法及改善措施,最后以提高植被生产力为驱使目标,对未来植物光合作用限制因素研究提出以下内容:(1)基因工程技术与系统生物学数据相结合提高植被生产力;(2)气孔响应速度对植物光合作用的影响机制;(3)水通道蛋白(Aquaporin, AQPs)和碳酸酐酶(Carbonic anhydrase, CAs)感知环境信号变化的驱动基因。以期为未来气候变化背景下,深入认识和降低植物光合作用限制,提...  相似文献   

7.
The effect of four different NaCl concentrations (from 0 to 102 mM NaCl) on seedlings leaves of two corn (Zea mays L.) varieties (Aristo and Arper) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthesis, stomatal conductance, photosynthetic pigments concentration, tissue hydration and ionic accumulation. Salinity treatments showed a decrease in maximal efficiency of PSII photochemistry (Fv/Fm) in dark-adapted leaves. Moreover, the actual PSII efficiency (ϕPSII), photochemical quenching coefficient (qp), proportion of PSII centers effectively reoxidized, and the fraction of light used in PSII photochemistry (%P) were also dropped with increasing salinity in light-adapted leaves. Reductions in these parameters were greater in Aristo than in Arper. The tissue hydration decreased in salt-treated leaves as did the photosynthesis, stomatal conductance (g s) and photosynthetic pigments concentration essentially at 68 and 102 mM NaCl. In both varieties the reduction of photosynthesis was mainly due to stomatal closure and partially to PSII photoinhibition. The differences between the two varieties indicate that Aristo was more susceptible to salt-stress damage than Arper which revealed a moderate regulation of the leaf ionic accumulation.  相似文献   

8.
It is still unknown whether the midday depression of photosynthesis under severe water stress, frequently observed in plants growing in a Mediterranean-type climate, is primarily a consequence of diffusional or non-diffusional limitations. We carried out combined measurements of gas exchanges and chlorophyll fluorescence in field-grown Arbutus unedo L. trees during late spring and mid summer, and a quantitative limitation analysis was performed to distinguish between the different limitations to photosynthesis, i.e., diffusional [D L = stomatal (S L) + mesophyll (MCL)] and non-diffusional (carboxylation capacity and electron transport, B L) limitations. Light-saturated assimilation at ambient CO2 (A max), stomatal conductance to water vapour (g sw) and maximum carboxylation rate (V cmax C i) showed a marked midday depression during both periods. The total limitations tended to increase during the day and were remarkably similar in June and July (50 and 48%, respectively); on a daily basis, D L was similar to B L (about 23%) in June; whereas, in July the former was predominant (38 and 4%, respectively). We concluded that the midday depression in photosynthesis was largely caused by diffusional limitations, with non-diffusional limitations playing a smaller role. Although stomatal closure was the main diffusional limitation, the decline in mesophyll conductance was not negligible during the hottest and driest period.  相似文献   

9.
盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响   总被引:3,自引:0,他引:3  
以内陆高寒区盐碱地重要的经济树种枸杞2年生幼苗为研究对象,采用盆栽控制试验方法,设置50、100、200、300mmol·L~(-1)共4个盐和碱(NaCl和NaHCO3)胁迫浓度,研究盐、碱胁迫对枸杞苗木生长和光合的影响,以明确枸杞幼苗生长的耐盐、碱浓度范围,探讨土壤盐碱含量与土壤水分含量的关系,为不同类型盐碱条件下枸杞的种植和水分管理提供理论依据。结果表明:(1)随着盐碱胁迫浓度的增大,枸杞幼苗根茎叶生物量及叶绿素含量(SPAD)、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间二氧化碳浓度(Ci)等光合作用参数逐渐受到显著抑制,且碱胁迫的抑制作用更强烈;但低浓度(50mmol/L)NaCl胁迫下,枸杞幼苗叶绿素含量和净光合速率并未受到显著影响。(2)在盐碱胁迫条件下,枸杞幼苗的最大净光合速率(Pnmax)、暗呼吸速率(RD)、初始量子效率(AQY)、光饱和点(LSP)均低于对照,而光补偿点(LCP)高于对照,且随着胁迫浓度的增加,碱胁迫处理下的变幅大于盐胁迫。(3)随着胁迫浓度的增大,影响净光合速率的因素由气孔限制转向非气孔限制的临界值,在盐胁迫下的临界浓度约为200mmol/L,在碱胁迫下的临界浓度约为100mmol/L。(4)按照指标值超过对照组50%标准,经回归分析确定,枸杞耐盐和耐碱阈值分别为(246.3±2.1)mmol/L和(126.7±2.7)mmol/L;在此阈值的基础上,得到土壤含水量与土壤含盐量回归曲线方程。研究认为,枸杞幼苗具有一定的耐盐能力,但过高浓度的盐碱胁迫会损坏其光合结构,降低光环境适应能力和光合作用效率,从而影响其正常生长。  相似文献   

10.
Sôber  A. 《Photosynthetica》1998,34(4):599-603
A positive correlation was found between steady state values of hydraulic (L pA) and stomatal conductance (g s) of French bean leaves: both were lower in the dark than in the light and lower in water-deficient plants than in the well-watered ones. The relative rate of stomatal opening after a pressure rise in the xylem was also positively related to L pA. The L pA and g s were both related to the maximal photosynthetic rate at saturating CO2 concentrations.  相似文献   

11.
Whole-canopy measurements of water flux were used to calculate stomatal conductance (g s ) and transpiration (E) for seedlings of western water birch (Betula occidentalis Hook.) under various soil-plant hydraulic conductances (k), evaporative driving forces (ΔN; difference in leaf-to-air molar fraction of water vapor), and soil water potentials (Ψs). As expected, g s dropped in response to decreased k or ΨS, or increased ΔN(> 0.025). Field data showed a decrease in mid-day g s with decreasing k from soil-to-petiole, with sapling and adult plants having lower values of both parameters than juveniles. Stomatal closure prevented E and Ψ from inducing xylem cavitation except during extreme soil drought when cavitation occurred in the main stem and probably roots as well. Although all decreases in g s were associated with approximately constant bulk leaf water potential (ψl), this does not logically exclude a feedback response between ΨL and g s . To test the influence of leaf versus root water status on g s , we manipulated water status of the leaf independently of the root by using a pressure chamber enclosing the seedling root system; pressurizing the chamber alters cell turgor and volume only in the shoot cells outside the chamber. Stomatal closure in response to increased ΔN, decreased k, and decreased ΨS was fully or partially reversed within 5 min of pressurizing the soil. Bulk ΨL remained constant before and after soil pressurizing because of the increase in E associated with stomatal opening. When ΔN was low (i.e., < 0.025), pressurizing the soil either had no effect on g s , or caused it to decline; and bulk ΨL increased. Increased Ψl may have caused stomatal closure via increased backpressure on the stomatal apparatus from elevated epidermal turgor. The stomatal response to soil pressurizing indicated a central role of leaf cells in sensing water stress caused by high ΔN, low k, and low ΨS. Invoking a prominent role for feedforward signalling in short-term stomatal control may be premature.  相似文献   

12.
 Light saturated photosynthesis (A) in field saplings of shade tolerant, intermediate, and intolerant tree species was analyzed for stomatal and nonstomatal limitations to test differences between species and sun and shade phenotypes during drought. Throughout the study, photosynthesis was highest and mesophyll limitations of A (Lm) lowest in the intolerant species in both open and understory habitats. The shade tolerant species exhibited the only drought-related decreased A and increased Lm in the open, and the greatest drought-related decreased A and increased Lm in the understory. Few species exhibited significant habitat or drought-related differences in stomatal conductance to CO2 (gc), but even slight decreases in gc during drought were associated with large increases in stomatal limitations to A (Lg). Combined changes in Lm and Lg resulted in increased relative stomatal limitation to A (l g) in several species during drought. Nevertheless, the overall lack of stomatal closure allowed for nonstomatal limitations to play a major role in reduced A during drought. Higher leaf N was associated with shallower slope of the l g versus gc relationship, an indication of greater A capacity. Photosynthetic capacity tended to be greater in the intolerant species than the tolerant species, and it tended to decrease during drought primarily in the shade tolerant species in the understory. Findings in the literature suggest that carbon reduction reactions may be more susceptible to drought than photosynthetic light reactions. If so, reduced carbon reduction capacity of shade tolerant species or shade phenotypes may predispose them to drought conditions, which suggests a mechanism behind the well-recognized tradeoff between drought tolerance and shade tolerance of temperate tree species. Received: 20 October 1995 / Accepted: 20 February 1996  相似文献   

13.
In nature, soil salinity and fluctuating light (FL) often occur concomitantly. However, it is unknown whether salt stress interacts with FL on leaf photosynthesis, architecture, biochemistry, pigmentation, mineral concentrations, as well as whole-plant biomass. To elucidate this, tomato (Solanum lycopersicum) seedlings were grown under constant light (C, 200 μmol m−2 s−1) or FL (5–650 μmol m−2 s−1), in combination with no (0 mM NaCl) or moderate (80 mM NaCl) salinity, for 14 days, at identical photoperiods and daily light integrals. FL and salt stress had separate effects on leaf anatomy, biochemistry and photosynthetic capacity: FL reduced leaf thickness as well as nitrogen, chlorophyll and carotenoid contents per unit leaf area, but rarely affected steady-state and dynamic photosynthetic properties along with abundance of key proteins in the electron transport chain. Salt stress, meanwhile, mainly disorganized chloroplast grana stacking, reduced stomatal density, size and aperture as well as photosynthetic capacity. Plant biomass was affected interactively by light regime and salt stress: FL reduced biomass in salt stressed plants by 17%, but it did not affect biomass of non-stressed plants. Our results stress the importance of considering FL when inferring effects of salt-stress on photosynthesis and productivity under fluctuating light intensities.  相似文献   

14.
Net photosynthetic rate (P N), stomatal conductance (g s), intercellular CO2 concentration (C i), transpiration rate (E), water use efficiency (WUE), and stomatal limitation (Ls) of Populus euphratica grown at different groundwater depths in the arid region were measured. g s of the trees with groundwater depth at 4.74 m (D4) and 5.82 m (D5) were lower and a little higher than that at 3.82 m (D3), respectively. Compared with C i and Ls of the D3 trees, C i decreased and Ls increased at 4.74 m, however, Ci increased and Ls decreased at D5. Hence photosynthetic reduction of P. euphratica was attributed to either stomatal closure or non-stomatal factors depending on the groundwater depths in the plant locations. P N of the D3 trees was significantly higher than those at D4 or D5. The trees of D4 and D5 did not show a significant difference in their P N, indicating that there are mechanisms of P. euphratica tolerance to mild and moderate drought stress.  相似文献   

15.
Dwarf mistletoe (Arceuthobium spp.) is a hemiparasite that is said to be the single‐most destructive pathogen of commercially valuable coniferous trees in many regions of the world. Although its destructive nature is well documented in many respects, its effects on the physiology of its host are poorly understood. In the present study, water and carbon relations were characterized over a range of scale from leaf to whole tree in large (40‐ to 50‐m‐tall) individuals of western hemlock (Tsuga heterophylla (Raf.) Sarg.) that were either heavily infected, or uninfected with hemlock dwarf mistletoe (Arceuthobium tsugense). Specific hydraulic conductivity (ks) of infected branches was approximately half that of uninfected branches, yet leaf‐specific conductivity (kL) was similar because leaf area : sapwood area ratios (AL : AS) of infected branches were lower. Pre‐dawn and minimum leaf water potential and stomatal conductance (gs) were similar among infected and uninfected trees because adjustments in hydraulic architecture of infected trees maintained kL despite reduced ks. Maximum whole‐tree water use was substantially lower in infected trees (approximately 55 kg d?1) than in uninfected trees (approximately 90 kg d?1) because reduced numbers of live branches in infected trees reduced whole‐tree AL : AS in a manner consistent with that observed in infected branches. Maximum photosynthetic rates of heavily infected trees were approximately half those of uninfected trees. Correspondingly, leaf nitrogen content was 35% lower in infected trees. Foliar δ13C values were 2.8‰ more negative in infected than in uninfected individuals, consistent with the absence of stomatal adjustment to diminished photosynthetic capacity. Adjustments in hydraulic architecture of infected trees thus contributed to homeostasis of water transport efficiency and transpiration on a leaf area basis, whereas both carbon accumulation and photosynthetic water use efficiency were sharply reduced at both the leaf and whole‐tree scale.  相似文献   

16.
Miconia albicans, a common evergreen cerrado species, was studied under field conditions. Leaf gas exchange and pre-dawn leaf water potential (Ψpd) were determined during wet and dry seasons. The potential photosynthetic capacity (P Npmax) and the apparent carboxylation efficiency (ε) dropped in the dry season to 28.0 and 0.7 %, respectively, of the maximum values in the wet season. The relative mesophyll (Lm) and stomatal (Ls) limitations of photosynthesis increased, respectively, from 24 and 44 % in the wet season to 79 and 57 % at the peak of the dry season when mean Ψpd reached −5.2 MPa. After first rains, the P Npmax, ε, and Lm recovered reaching the wet season values, but Ls was maintained high (63 %). The shallow root system growing on stonemason limited by lateral concrete wall to a depth of 0.33 m explained why extreme Ψpd was brought about. Thus M. albicans is able to overcome quickly the strains imposed by severe water stress.  相似文献   

17.
The interactive effects of light intensity and controlled-release nitrogen fertilizer (CRNF) supply on growth, gas exchange, and chlorophyll (Chl) fluorescence parameters of two species of potted Hosta seedlings, original species of the genus Hosta in China, were studied. N4 (4 g of CRNF per pot), N8 (8 g of CRNF per pot), and sometimes N12 (12 g of CRNF per pot), significantly increased total dry weights, net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), the maximum quantum yield of PSII photochemistry (F v/F m), the maximum ratio of quantum yields of photochemical and concurrent nonphotochemical processes in PSII (F v/F 0), actual efficiency of photochemical energy conversion in PSII under light (ΦPSII), and photochemical quenching coefficient (qP), but significantly decreased internal CO2 concentration (C i) and nonphotochemical Chl fluorescence quenching (NPQ) compared to control plants at different growth stages of the two Hosta species in two levels of light intensities (50% of natural light (L50) and 70% of natural light (L70)). Based on the available data, we concluded that the increments in total dry weights of Hosta clausa var. ensata and Hosta ventricosa by appropriate amount of CRNF supply treatments under L50 and/or L70 light conditions are directly related to the increments in the P N, which may be due to both stomatal and nonstomatal improvements for a longer growing time. Furthermore, there was an interaction between light intensity and CRNF supply treatments on growth and photosynthetic characteristics of the two Hosta species. The adaptability of Hosta plants with obvious stoloniferous rootstock to stronger light was higher than that of Hosta plants without obvious stoloniferous rootstock.  相似文献   

18.
为探讨外源油菜素内酯(brassinosteroid,BR)诱导黄瓜幼苗对Ca(NO3)2胁迫抗性的效果,研究了3种外源BR施用方法(0.01mg·L-1 BR浸种、0.1mg·L-1 BR喷叶及其二者结合施用)对Ca(NO3)2胁迫(60mmol·L-1)下黄瓜幼苗生长、生理活动以及光合作用的影响。结果表明:(1)3种外源BR方法处理后,Ca(NO3)2胁迫下的黄瓜幼苗株高、茎粗、展开叶片数、叶面积、干重含水量均显著提高,同时其叶片游离脯氨酸和可溶性糖含量上升,过氧化物酶活性提高,而其丙二醛(MDA)含量趋于无Ca(NO3)2胁迫对照的水平;(2)外源BR处理还提高了Ca(NO3)2胁迫下黄瓜幼苗的净光合速率、蒸腾速率和气孔导度,却抑制了Ca(NO3)2胁迫下胞间CO2浓度的升高。研究认为,适宜浓度的外源BR浸种和喷叶处理均可有效增强黄瓜幼苗渗透调节能力,降低细胞膜质过氧化伤害程度,提高抗氧化酶活性和光合效率,从而表现出对Ca(NO3)2胁迫的抗性,并以操作简便、用量极低的0.01mg·L-1 BR浸种方法效果最佳。  相似文献   

19.
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt‐stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt‐stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO2 concentrations in the chloroplasts (Cc) of rice leaves. Decreased A in salt‐stressed leaves was mainly attributable to low Cc, which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt‐stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity‐tolerant rice cultivars.  相似文献   

20.
Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction in Kroot‐r caused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease in Kplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot‐r and gs. Our results demonstrated that the reduction in Kplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant‐l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号