共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Jiqing Gou Smriti Debnath Liang Sun Amy Flanagan Yuhong Tang Qingzhen Jiang Jiangqi Wen Zeng‐Yu Wang 《Plant biotechnology journal》2018,16(4):951-962
Biomass yield, salt tolerance and drought tolerance are important targets for alfalfa (Medicago sativa L.) improvement. Medicago truncatula has been developed into a model plant for alfalfa and other legumes. By screening a Tnt1 retrotransposon‐tagged M. truncatula mutant population, we identified three mutants with enhanced branching. Branch development determines shoot architecture which affects important plant functions such as light acquisition, resource use and ultimately impacts biomass production. Molecular analyses revealed that the mutations were caused by Tnt1 insertions in the SQUAMOSA PROMOTER BINDING PROTEIN‐LIKE 8 (SPL8) gene. The M. truncatula spl8 mutants had increased biomass yield, while overexpression of SPL8 in M. truncatula suppressed branching and reduced biomass yield. Scanning electron microscopy (SEM) analysis showed that SPL8 inhibited branching by directly suppressing axillary bud formation. Based on the M. truncatula SPL8 sequence, alfalfa SPL8 (MsSPL8) was cloned and transgenic alfalfa plants were produced. MsSPL8 down‐regulated or up‐regulated alfalfa plants exhibited similar phenotypes to the M. truncatula mutants or overexpression lines, respectively. Specifically, the MsSPL8 down‐regulated alfalfa plants showed up to 43% increase in biomass yield in the first harvest. The impact was even more prominent in the second harvest, with up to 86% increase in biomass production compared to the control. Furthermore, down‐regulation of MsSPL8 led to enhanced salt and drought tolerance in transgenic alfalfa. Results from this research offer a valuable approach to simultaneously improve biomass production and abiotic stress tolerance in legumes. 相似文献
5.
Wanhui Kim 《植物科学评论》2014,33(6):470-485
Successful reproduction of flowering plants requires the appropriate timing of the floral transition, as triggered by environmental and internal cues and as regulated by multiple signaling modules. Among these modules, microRNAs (miRNAs), the evolutionarily conserved regulators, respond to environmental and internal cues and network with other integrators of flowering cues. Moreover, miRNA signaling modules affect the timing of flowering in many plant species. Here, we comprehensively review recent progress in understanding the function of miRNAs and their target genes in flowering time regulation in diverse plant species. We focus on the role of the miRNA-target gene modules in various flowering pathways and their conserved and divergent functions in flowering plants. We also examine, in depth, the crosstalk by sequential activity of miR156 and miR172, two of the most-studied and evolutionarily conserved miRNAs in both annual and perennial plants. 相似文献
6.
Peng M Cui Y Bi YM Rothstein SJ 《The Plant journal : for cell and molecular biology》2006,46(2):282-296
7.
8.
Nguyen Hong Vu Phan Hoang Anh Duong Tan Nhut 《Plant Cell, Tissue and Organ Culture》2006,87(3):315-320
Shoots of rose (hybrid tea) cv. “First Prize” were induced to flower in vitro on Murashige and Skoog (MS) medium containing various sucrose concentrations (15, 30 or 45 g l−1) and different phytohormone combinations of different cytokinins [N6-benzyladenine (BA); thidiazuron (TDZ) and zeatin] with α-naphthaleneacetic acid (NAA). Results indicate that sucrose is the key factor in floral morphogenesis while cytokinin increases the flowering percentage and helps the normal development of floral buds. From the three cytokinins that were used, BA and zeatin were considered to be more suitable as inductive flowering agents than TDZ. Reduced inorganic and organic salt concentration in MS media had a positive effect on in vitro flowering. The morphology of shoots bearing floral buds varied with different cytokinin treatments. The highest percentage (45%) of flowering was obtained on MS medium supplemented with 3.0 mg l−1 BA, 0.1 mg l−1 NAA and 30 g l−1 sucrose. 相似文献
9.
小麦tae-MIR156前体基因的克隆及其靶基因TaSPL17多态性分析 总被引:1,自引:0,他引:1
Squamosa-promoter binding protein (SBP)-box基因是植物特有的一类转录因子, 广泛参与植物生长发育, 其部分成员受miR156调控。文章克隆了小麦(Triticum aestivum) tae-MIR156前体基因, 转录后能够形成茎环结构。小麦10个SBP-box基因中, 仅TaSPL3和TaSPL17在编码区存在tae-miR156识别位点。SPL17在普通小麦的A基因组供体种乌拉尔图小麦(Triticum urartu, AA) UR209和B基因组供体种拟斯卑尔脱山羊草(Aegilops speltoides, BB) Y2001中均为多拷贝(SPL17-A1、SPL17-A2和SPL17-A3; SPL17-B1、SPL17-B2和SPL17-B3), 在D基因组供体种粗山羊草(Aegilops tauschii, DD) Ae38中仅检测到一种序列(SPL17-D); SPL17-A2与SPL17-B2, SPL17-A3与SPL17-B3、SPL17-D两两之间序列的一致性程度均大于99%, 且与普通小麦(中国春、衡观35和双丰收)的TaSPL17序列具有较高的一致性, 提示它们可能来源于共同的祖先基因, 并且在进化过程中高度保守。靶基因TaSPL17中的tae-miR156识别位点非常保守, 在根据单株穗数和基因型多样性挑选的SubP1和SubP2群体中均未检测到tae-miR156识别位点存在变异碱基。 相似文献
10.
UV‐B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana
下载免费PDF全文

UV‐B is a high‐energy component of the solar radiation perceived by the plant and induces a number of modifications in plant growth and development, including changes in flowering time. However, the molecular mechanisms underlying these changes are largely unknown. In the present work, we demonstrate that Arabidopsis plants grown under white light supplemented with UV‐B show a delay in flowering time, and this developmental reprogramming is mediated by the UVR8 photoreceptor. Using a combination of gene expression analyses and UV‐B irradiation of different flowering mutants, we gained insight into the pathways involved in the observed flowering time delay in UV‐B‐exposed Arabidopsis plants. We provide evidence that UV‐B light downregulates the expression of MSI1 and CLF, two of the components of the polycomb repressive complex 2, which in consequence drives a decrease in H3K27me3 histone methylation of MIR156 and FLC genes. Modification in the expression of several flowering time genes as a consequence of the decrease in the polycomb repressive complex 2 activity was also determined. UV‐B exposure of flowering mutants supports the involvement of this complex in the observed delay in flowering time, mostly through the age pathway. 相似文献
11.
Shoot apical meristem (SAM) of plants harbors stem cells capable of generating the aerial tissues including reproductive organs. Therefore, it is very important for plants to control SAM proliferation and its density as a survival strategy. The SAM is regulated by the dynamics of a specific gene network, such as the WUS-CLV interaction of A. thaliana. By using a mathematical model, we previously proposed six possible SAM patterns in terms of the manner and frequency of stem cell proliferation. Two of these SAM patterns are predicted to generate either dichotomous or axillary shoot branch. Dichotomous shoot branches caused by this mechanism are characteristic of the earliest vascular plants, such as Cooksonia and Rhynia, but are observed in only a small minority of plant species of the present day. On the other hand, axillary branches are observed in the majority of plant species and are induced by a different dynamics of the feedback regulation between auxin and the asymmetric distribution of PIN auxin efflux carriers. During evolution, some plants may have adopted this auxin-PIN system to more strictly control SAM proliferation. 相似文献
12.
为寻求半干旱黄土高原区种植紫花苜蓿的适宜覆盖材料和最佳沟垄比,采用完全随机设计布置大田试验,以传统平作为对照,研究不同垄覆盖材料(土壤结皮、生物可降解地膜和普通地膜)和不同沟垄比(沟宽:垄宽分别为60∶30、60∶45和60∶60,单位是cm)对土壤水分和紫花苜蓿干草产量等的影响。结果表明:通过对2012年和2013年紫花苜蓿生育期降雨量统计,2a平均值显示,无效降雨次数(53次)大于有效降雨次数(27次),无效降雨对总降雨量的贡献率(19%)小于有效降雨(81%)。就紫花苜蓿全生育期而言,与平作相比,SR_(30)、SR_(45)、SR_(60)、BMR_(30)、BMR_(45)、BMR_(60)、CMR_(30)、CMR_(45)和CMR_(60)(SR、BMR和CMR分别代表土垄、生物可降解膜垄和普通膜垄,下标分别表示垄宽为30、45cm和60cm)连续2a的平均根层(0—140 cm)土壤贮水量分别提高12.8、19.2、24.4、26.0、30.7、40.5、29.9、37.1 mm和47.7 mm。垄沟集雨种植第1年龄和第2年龄紫花苜蓿根层没有出现明显干层。与平作相比,SR_(30)、SR_(45)和SR_(60)的连续2a紫花苜蓿平均实际干草产量分别降低3%、8%和13%,WUE分别提高52%、58%和55%;BMR_(30)、BMR_(45)、BMR_(60)、CMR_(30)、CMR_(45)和CMR_(60)的连续2a紫花苜蓿平均实际干草产量分别提高14%、12%、7%、17%、19%和9%,WUE分别提高49%、62%、59%、51%、67%和56%。当紫花苜蓿生育期降雨量为380.7—427.6 mm和沟垄比为60 cm∶35—36 cm时,生物可降解膜垄和普通膜垄的紫花苜蓿实际干草产量达到最大值,为该地区垄沟集雨种植紫花苜蓿提供参考。 相似文献
13.
为探究紫花苜蓿/禾本科牧草间作下光能利用特性、光能利用诸因素的产量效应及其调控机理,通过2017—2019年3年田间试验,以紫花苜蓿、饲用小黑麦(C3植物)、饲用玉米(C4植物)3种单作模式为对照,研究了紫花苜蓿/小黑麦和紫花苜蓿/玉米两种间作模式下的产量效应、光能利用各因子对产量形成的影响、光能利用特征差异及机理。结果表明: 两种间作模式的土地当量比均大于1,表明两种间作模式的土地利用率都高于单作,均有高于单作的产量效益,且增产潜力较大的是紫花苜蓿/小黑麦间作模式。光能利用各因子对产量的贡献依次是: 叶面积指数(1.531)>净光合速率(0.882)>胞间CO2浓度(0.282)>蒸腾速率(-0.229)>冠层开度(-0.291)>光合有效辐射截获率(-0.681)>气孔导度(-0.751)。其中,叶面积指数不仅是表征光合能力的重要指标之一,更是以收获营养体为目标的牧草作物产量的重要构成因子,光合特性诸因素中净光合速率是影响产量的主要因子。与单作相比,间作下紫花苜蓿、小黑麦、玉米的净光合速率均存在差异,且表现为相同的规律。间作下净光合速率提高的主要途径为: 小黑麦和玉米通过增强CO2的羧化固定能力,提高对强光的利用能力,从而提高净光合速率,促进产量增加;而紫花苜蓿则是通过提高功能叶的叶绿素b含量,改变叶绿素构成,增强对光能的收集和传递,从而提高净光合速率,促进其在弱光下光合能力的提高和正常生长。 相似文献
14.
15.
16.
17.
18.
Holly L. Baxter Mitra Mazarei Alexandru Dumitrache Jace M. Natzke Miguel Rodriguez Jr Jiqing Gou Chunxiang Fu Robert W. Sykes Geoffrey B. Turner Mark F. Davis Steven D. Brown Brian H. Davison Zeng‐Yu Wang C. Neal Stewart Jr 《Plant biotechnology journal》2018,16(1):39-49
Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate‐expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%–56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development. 相似文献
19.
The relation of the within-season and between-season patterns of shoot growth were compared in a clonal grass with long-lived shoots,Festuca rubra, in a mown mountain grassland. The growth rate of shoot length from spring to summer in a year was almost constant for each shoot irrespective of spring shoot length each year. The annual shoot growth rate from spring to spring was negatively correlated with the shoot length in the first spring. Shoots of different length and age therefore tended to converge over time to a population of identical shoot size, suggesting an equalizing effect of growth pattern on size structure. Shoot size (shoot length and number of leaves) influenced the fates of shoots. Larger shoots showed an increased incidence of both flowering and formation of intravaginal daughter shoots and a decreased incidence of death in the subsequent time period. The fates of shoots were independent of their age. Although the negatively size-dependent springto-spring annual shoot growth rate acted to decrease shoot size variation, the remaining variation within the shoot population was still sufficient to generate different fates of shoots. These fates were not related to the previous life history of individual shoots. There was a significantly positive effect of the shoot size at initiation on its life expectancy. This was mainly attributable to the positively size-dependent survival rate of shoots in the early stage (<1 year old) of shoot life history. Later on (> 1 year old), shoot size had little effect on the survival rate of shoots. Once small young shoots have survived this early stage (< 1 year old) in life history, they can grow vigorously, little affected by competition regardless of shoot size, and converge to a stable size structure of shoots of similar size. Only shoot size in the early stage ( < 1 year old) of life history is important for the persistence of a shoot population. 相似文献