首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aquaporins, which facilitate the diffusion of water across biological membranes, are key molecules for the regulation of water transport at the cell and organ levels. We recently reported that hydrogen peroxide (H2O2) acts as an intermediate in the regulation of Arabidopsis root water transport and aquaporins in response to NaCl and salicylic acid (SA).1 Its action involves signaling pathways and an internalization of aquaporins from the cell surface. The present addendum connects these findings to another recent work which describes multiple phosphorylations in the C-terminus of aquaporins expressed in the Arabidopsis root plasma membrane.2 A novel role for phosphorylation in the process of salt-induced relocalization of AtPIP2;1, one of the most abundant root aquaporins, was unraveled. Altogether, the data delineate reactive oxygen species (ROS)-dependent signaling mechanisms which, in response to a variety of abiotic and biotic stresses, can trigger phosphorylation-dependent PIP aquaporin intracellular trafficking and root water transport downregulation.Key words: reactive oxygen species, aquaporin, phosphorylation, cell signaling, stress, protein relocalization, root water transportPlants can regulate their water uptake capacity i.e. their root hydraulic conductivity (Lpr) on a short term (minutes to hour) basis through regulation of plasma membrane (PM) aquaporins of the Plasma membrane Intrinsic Protein (PIP) subfamily.3 It has been known for a long time that salt stress (NaCl), as many other abiotic stresses such as cold, anoxia or nutrient deprivation, induces an inhibition of Lpr in many plant species.3 In the recent study by Boursiac et al. (2008),1 we identified SA as a new inhibitory increased the accumulation of ROS in roots, it was hypothesized that H2O2 or other ROS may have a central role in the regulation of root water transport in response to various biotic or abiotic stimuli. When Arabidopsis roots were treated with mM concentrations of exogenous H2O2, Lpr was inhibited within minutes by up to 90%. These findings are consistent with previous reports showing that ROS can downregulate water transport in cucumber and maize roots or in the algae Chara corallina.47 H2O2 and possibly other derived ROS may modulate the Lpr through signaling mechanisms or by a direct oxidative gating of aquaporins. The latter hypothesis, which has been favored in previous studies by Steudle and colleagues,6,7 was investigated by Boursiac et al., by functionally expressing aquaporins in Xenopus oocytes and by testing their sensitivity to external H2O2. The results show that Arabidopsis aquaporins are insensitive to direct oxidation by H2O2 or hydroxyl radicals. Thus, these and complementary pharmacological analyses on excised roots rather support a role for H2O2 as a second messenger that connects environmental stimulus perception to water transport regulation in plant roots. The additional finding that H2O2 can be transported by aquaporins8,9 opens the possibility of intricate loop mechanisms whereby these proteins may interfere with their own regulation. For example, active PIP aquaporins could facilitate the diffusion within the cell of NADPH-oxidase derived apoplastic H2O2, which in turn would activate signaling pathways acting on PIP activity and/or subcellular localization.In a previous study, we monitored the subcellular localization of AtPIP1;2 and AtPIP2;1, two of the most abundant PIPs in roots, by expression in transgenic Arabidopsis of fusions with the green fluorescent protein (GFP).10 We observed that a 100 mM NaCl treatment induced in 2–4 hours an increased intracellular labeling which was interpreted as an intracellular relocalization of the two aquaporins.10 In our more recent study, both a 150 mM NaCl and a 0.5 mM SA treatments induced an intracellular labeling by GFP-PIP1;2 and PIP2;1-GFP fusions, with a “fuzzy” pattern or at the level of spherical bodies. Preventing the NaCl- or SA-dependent accumulation of ROS with exogenous catalase was able to almost completely counteract the effects of the two stimuli on the localization pattern of the PIP2;1-GFP fusion. In addition, the inhibition of Lpr by SA was also counteracted at 33% by the catalase treatment. Altogether, the data stress the importance of an ROS-induced relocalization of aquaporins in the regulation of root water transport. Yet, we still miss quantitative data and complementary pharmacological evidence to determine the exact contribution of aquaporin relocalization with respect to other aquaporin regulatory mechanisms.Another recent work by our group has, however, provided deeper insights into the mechanisms of stress-induced relocalization of aquaporins in plants.2 Our group identified by mass spectrometry multiple adjacent phosphorylation sites (up to 4 in the case of AtPIP2;4) in the C-terminus of aquaporins expressed at the root plasma membrane.2 Phosphorylation of AtPIP2;1, which shows a simpler profile with only two sites at Ser280 and Ser283, was studied in closer detail by site-directed mutagenesis and expression in transgenic Arabidopsis of GFP-PIP2;1 fusions. A Ser283Ala mutation, which mimics a constitutively dephosphorylated Ser283, induced a marked intracellular accumulation of GFP-PIP2;1 in resting conditions. Because no phenotype was observed after a Ser280Ala mutation, the data suggest a specific role for Ser283 phosphorylation in the proper targeting of the protein. When plants were treated by 100 mM NaCl for 2 to 4 hours, the wild type (WT) and Ser280Ala mutant forms of GFP-PIP2;1 showed similar intracellular staining, in both “fuzzy” structures or spherical bodies. On the contrary, the Ser283Ala mutant did not label any spherical body. Interestingly, a Ser283Asp mutation that mimics a constitutively phosphorylated Ser283 resulted in a salt-induced labeling of spherical bodies similar to the one observed with WT GFP-PIP2;1 whereas no “fuzzy” staining was observed. Therefore, the phosphorylation status of Ser283 seems to determine the redistribution of AtPIP2;1 towards fuzzy structures (non-phosphorylated Ser283) or spherical bodies (phosphorylated Ser283). Although the nature of these intracellular structures remains to be identified, we now consider the possibility that the spherical bodies correspond to the late endosome/prevacuolar compartment that orientates aquaporins towards a degradation pathway whereas the fuzzy structures may act as a storage compartment for subsequent relocalization of PIP aquaporins to the PM, and rapid recovery of the PM water permeability. Although we favor the idea that the intracellular labeling shown by GFP-PIP2;1 in response to salt originates from aquaporins relocalized from the PM, newly synthesized proteins may also contribute to this pattern.Prak et al., also developed an absolute quantification method to show that the phosphorylation profile of AtPIP2;1 at the root plasma membrane was altered upon 100 mM NaCl and 2 mM H2O2 treatments. Whereas NaCl decreased the abundance of phosphorylated Ser283, H2O2 enhanced the overall phosphorylation of the AtPIP2;1 C-terminus. These observations add another level of complexity to the mechanisms of stimulus-induced and phosphorylation- dependent relocalisation of plant aquaporins uncovered in our group. Although one of the primary effects of NaCl is undoubtedly an accumulation of ROS, the difference in phosphorylation patterns observed in response to H2O2 and NaCl treatments may come from quantitative and kinetic differences in ROS patterns between the two treatments or from additional regulations activated by salt.We note that phosphorylation of PIP aquaporins had already been investigated in detail.1113 In particular, studies with spinach SoPIP2;1 has pointed to two phosphorylation sites, Ser115 in the first cytoplasmic loop (loop B) and Ser274 at the C-terminus, as important for modulating the water transport activity of this aquaporin after expression in Xenopus oocytes. A role for these two sites in aquaporin gating was also deduced from the atomic structure of SoPIP2;1.14 Whereas Ser280 in AtPIP2;1 corresponds to Ser274 in SoPIP2;1, the functional role of sites equivalent to Ser283 in AtPIP2;1 had not been considered previously in any other PIP. To our knowledge, the study by Prak et al., provides the first evidence in plants for a role of phosphorylation on the relocalization of aquaporins and highlights the importance of multiple phosphorylations sites in the C-terminus of aquaporins, as has been recently shown in human Aquaporin-2.15,16Overall, the advance provided by our two recent studies delineates a working model (Fig. 1), whereby multiple abiotic and biotic stresses, which all induce an accumulation of ROS, activate common signaling pathways to downregulate root water transport. We have provided evidence that some of these pathways are calcium- and/ or protein kinase-dependent. One regulatory mechanism triggered by these pathways is the relocalization of aquaporins into intracellular “fuzzy” structures or bigger spherical bodies. For AtPIP2;1, the sorting between these structures is determined in part by the phosphorylation status of Ser283, which ultimately may control the cellular fate of the protein for degradation or remobilization to the PM. A coming challenge will be to determine how this and other cellular mechanisms quantitatively contribute to the integrated regulation of water transport at the cell and tissue (whole root) levels. Another avenue for future research will be to identify the molecular components involved in upstream ROS-dependent cell signaling and aquaporin phosphorylation. These studies will tell us how the regulation of root water uptake in parallel to the regulation of transpiration allows the plant to preserve its water status when it is continuously challenged by multiple stresses.Open in a separate windowFigure 1Tentative model of regulation of root hydraulic conductivity (Lpr) through reactive oxygen species (ROS) signaling. Multiple biotic and abiotic stimuli such as NaCl or salicylic acid can induce an intra- and/or extracellular accumulation of ROS by acting on their production, degradation or transport. The stimulus-induced ROS in turn activate signaling pathways involving protein kinases and cytosolic calcium. These events result in changes in the phosphorylation and subcellular localization patterns of plasma membrane (PM) aquaporins (PIPs). In particular, endocytosis can direct PIPs towards various intracellular compartments for subsequent recycling at the PM or degradation. Phosphorylation can interfere with this routing process, but also determines the intrinsic water transport activity (gating) of PM localized PIPs. The possibility exists that signaling components directly act on PIP gating, recycling or degradation through phosphorylation- and endocytosis-independent pathways (not shown). In addition, transport of H2O2 by PIP aquaporins may provide retroactive effects of aquaporins on upstream signaling events. Aquaporin activity at the PM determines root cell water permeability, which contributes to most of Lpr in Arabidopsis. The overall scheme shows how stress-induced ROS signaling results in an inhibition of PIP aquaporin activity and, as a consequence, in an overall downregulation of Lpr.  相似文献   

3.
Despite the high isoform multiplicity of aquaporins in plants, with 35 homologues including 13 plasma membrane intrinsic proteins (PIPs) in Arabidosis thaliana, the individual and integrated functions of aquaporins under various physiological conditions remain unclear. To better understand aquaporin functions in plants under various stress conditions, we examined transgenic Arabidopsis and tobacco plants that constitutively overexpress Arabidopsis PIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates and water transport were found between the transgenic and wild-type plants when grown under favorable growth conditions. The transgenic plants overexpressing PIP1;4 or PIP2;5 displayed a rapid water loss under dehydration stress, which resulted in retarded germination and seedling growth under drought stress. In contrast, the transgenic plants overexpressing PIP1;4 or PIP2;5 showed enhanced water flow and facilitated germination under cold stress. The expression of several PIPs was noticeably affected by the overexpression of PIP1;4 or PIP2;5 in Arabidopsis under dehydration stress, suggesting that the expression of one aquaporin isoform influences the expression levels of other aquaporins under stress conditions. Taken together, our results demonstrate that overexpression of an aquaporin affects the expression of endogenous aquaporin genes and thereby impacts on seed germination, seedling growth, and stress responses of the plants under various stress conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The adaptation capacity of olive trees to different environments is well recognized. However, the presence of microorganisms in the soil is also a key factor in the response of these trees to drought. The objective of the present study was to elucidate the effects of different arbuscular mycorrhizal (AM) fungi coming from diverse soils on olive plant growth and water relations. Olive plants were inoculated with native AM fungal populations from two contrasting environments, that is, semi‐arid – Freila (FL) and humid – Grazalema (GZ) regions, and subjected to drought stress. Results showed that plants grew better on GZ soil inoculated with GZ fungi, indicating a preference of AM fungi for their corresponding soil. Furthermore, under these conditions, the highest AM fungal diversity was found. However, the highest root hydraulic conductivity (Lpr) value was achieved by plants inoculated with GZ fungi and growing in FL soil under drought conditions. So, this AM inoculum also functioned in soils from different origins. Nine novel aquaporin genes were also cloned from olive roots. Diverse correlation and association values were found among different aquaporin expressions and abundances and Lpr, indicating how the interaction of different aquaporins may render diverse Lpr values.  相似文献   

5.
The absorption of soil water by roots allows plants to maintain their water status. At the endodermis, water transport can be affected by initial formation of a Casparian strip and further deposition of suberin lamellas and regulated by the function of aquaporins. Four Casparian strip membrane domain protein‐like (CASPL; CASPL1B1, CASPL1B2, CASPL1D1, and CASPL1D2) were previously shown to interact with PIP2;1. The present work shows that CASPL1B1, CASPL1B2, and CASPL1D2 are exclusively expressed in suberized endodermal cells, suggesting a cell‐specific role in suberization and/or water transport regulation. When compared with wild‐type plants, and by contrast to caspl1b1*caspl1b2 double loss of function, caspl1d1*caspl1d2 double mutants showed, in some control or NaCl stress experiments and not upon abscisic acid (ABA) treatment, a weak enlargement of the continuous suberization zone. None of the mutants showed root hydraulic conductivity (Lpr) phenotype, whether in control, NaCl, or ABA treatment conditions. The data suggest a slight negative role for CASPL1D1 and CASPL1D2 in suberization under control or salt stress conditions, with no major impact on whole root transport functions. At the molecular level, CASPL1B1 was able to physically interact with PIP2;1 and potentially could influence the regulation of aquaporins by acting on their phosphorylated form.  相似文献   

6.
7.
8.
Aquaporins are water channel proteins that facilitate the movement of water and other small solutes across biological membranes. Plants usually have large aquaporin families, providing them with many ways to regulate the water transport. Some aquaporins are regulated post-translationally by phosphorylation. We have previously shown that the water channel activity of SoPIP2;1, an aquaporin in the plasma membrane of spinach leaves, was enhanced by phosphorylation at Ser115 and Ser274. These two serine residues are highly conserved in all plasma membrane aquaporins of the PIP2 subgroup. In this study we have purified and characterized two protein kinases phosphorylating Ser115 and Ser274 in SoPIP2;1. By anion exchange chromatography, the Ser115 kinase was purified from the soluble protein fraction isolated from spinach leaves. The Ca2+-dependent Ser274 kinase was purified by peptide affinity chromatography using plasma membranes isolated from spinach leaves. When characterized, the Ser115 kinase was Mg2+-dependent, Ca2+-independent and had a pH-optimum at 6.5. In accordance with previous studies using the oocyte expression system, site-directed mutagenesis and kinase and phosphatase inhibitors, the phosphorylation of Ser274, but not of Ser115, was increased in the presence of phosphatase inhibitors while kinase inhibitors decreased the phosphorylation of both Ser274 and Ser115. The molecular weight of the Ser274 kinase was approximately 50 kDa. The identification and characterization of these two protein kinases is an important step towards elucidating the signal transduction pathway for gating of the aquaporin SoPIP2;1.  相似文献   

9.
10.
11.
12.
The arbuscular mycorrhizal (AM) symbiosis has been shown to modulate the same physiological processes as the phytohormone abscisic acid (ABA) and to improve plant tolerance to water deficit. The aim of the present research was to evaluate the combined influence of AM symbiosis and exogenous ABA application on plant root hydraulic properties and on plasma-membrane intrinsic proteins (PIP) aquaporin gene expression and protein accumulation after both a drought and a recovery period. Results obtained showed that the application of exogenous ABA enhanced osmotic root hydraulic conductivity (L) in all plants, regardless of water conditions, and that AM plants showed lower L values than nonAM plants, a difference that was especially accentuated when plants were supplied with exogenous ABA. This effect was clearly correlated with the accumulation pattern of the different PIPs analyzed, since most showed reduced expression and protein levels in AM plants fed with ABA as compared to their nonAM counterparts. The possible involvement of plant PIP aquaporins in the differential regulation of L by ABA in AM and nonAM plants is further discussed.  相似文献   

13.
Calcium‐dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium‐independent protein kinase activity. The C‐terminal calcium‐binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium‐dependent enzyme in chimeric ZmCPK25‐CPK1 proteins. Furthermore, co‐transfection of maize mesophyll protoplasts with active full‐length ZmCPK1 suppressed the expression of a cold‐induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation‐induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize.  相似文献   

14.
Protein phosphorylation may be required for plant cell response to phytohormones and other extracellular signals. Protein phosphorylation and protein kinase activity in the culm of heading time of rice (Oryza sativa L.) were studied. Before heading, protein kinase activity was increased by Ca2+ in the membrane fraction of the panicle and culm. The protein kinases with Mr of 51,900, 49,200, and 45,500 isolated from the membrane fraction of culm increased the protein phosphorylation of Mr and pI of 40,000/7.5 and 40,000/7.6 in the culm extract. The activation of protein kinases, associated with membrane and subsequent protein phosphorylation, thus appears to be involved in the regulation of heading time in rice.  相似文献   

15.
Root hydraulic conductivity in plants (Lpr) exhibits large variations in response to abiotic stimuli. In this study, we investigated the impact of dynamic, aquaporin-mediated changes of Lpr on leaf growth, water potential, and water flux throughout the plant. For this, we manipulated Lpr by subjecting roots to four independent treatments, with aquaporin inhibitors applied either to transpiring maize (Zea mays) plants grown in hydroponics or to detopped root systems for estimation of Lpr. The treatments were acid load at pH 6.0 and 5.0 and hydrogen peroxide and anoxia applied for 1 to 2 h and subsequently reversed. First, we established that acid load affected cell hydraulic conductivity in maize root cortex. Lpr was reduced by all treatments by 31% to 63%, with half-times of about 15 min, and partly recovered when treatments were reversed. Cell turgor measured in the elongating zone of leaves decreased synchronously with Lpr, and leaf elongation rate closely followed these changes across all treatments in a dose-dependent manner. Leaf and xylem water potentials also followed changes in Lpr. Stomatal conductance and rates of transpiration and water uptake were not affected by Lpr reduction under low evaporative demand. Increased evaporative demand, when combined with acid load at pH 6.0, induced stomatal closure and amplified all other responses without altering their synchrony. Root pressurization reversed the impact of acid load or anoxia on leaf elongation rate and water potential, further indicating that changes in turgor mediated the response of leaf growth to reductions in Lpr.Leaf growth is an essential process for crop production and is subject to large temporal fluctuations with environmental conditions. There is accumulating evidence that a large part of the changes observed in leaf growth depends on water transport within the plant (Sperry et al., 1998; Bouchabke et al., 2006). It has also been shown that changes in leaf water potential induced by root pressurization can trigger rapid variations of leaf elongation rate in wheat (Triticum aestivum) and barley (Hordeum vulgare; Passioura and Munns, 2000). This raises the question of whether and to what extent low hydraulic conductivity within the plant can limit leaf growth.After the stomata, the root system represents the largest resistance to water flow in the soil-plant atmosphere continuum (Steudle and Peterson, 1998). Root hydraulic conductivity (Lpr) is affected by environmental stimuli such as drought, salinity, anoxia, low temperature, and nutrient availability (Zhang and Tyerman, 1991; Azaizeh et al., 1992; Birner and Steudle, 1993; Boursiac et al., 2005; Vandeleur et al., 2009). This ability to respond rapidly to fluctuating conditions suggests that Lpr may participate in plant adaptation to diverse environments (Steudle, 2000). Aquaporins, a large family of water channel proteins located in plasma and intracellular membranes, are the main determinants of water flow across plant cells and tissues (Javot et al., 2003; Maurel et al., 2008). The dynamic changes in Lpr in response to chemical or environmental stimuli may result from modifications of aquaporin abundance or activity (Carvajal et al., 1996; Tournaire-Roux et al., 2003; Boursiac et al., 2005). In particular, aquaporin regulation by phosphorylation, protonation, and relocalization in intracellular compartments has been reported in response to extracellular stimuli (Guenther et al., 2003; Tournaire-Roux et al., 2003; Vera-Estrella et al., 2004; Boursiac et al., 2008).The first insights into the involvement of aquaporins in physiological processes such as cell enlargement, tissue differentiation, and organ movement have been obtained at the cell or tissue level (Hukin et al., 2002; Moshelion et al., 2002; Wei et al., 2007). It is still unknown to what extent changes in root aquaporin activity impact integrated physiological processes such as shoot growth of intact plants. The importance of aquaporins in controlling physiological processes in adult, transpiring plants is assumed to be rather limited; this is because the proportion of water transport controlled by aquaporins is believed to be much lower than that in slowly transpiring plants (Steudle and Frensch, 1996; Steudle and Peterson, 1998).The manipulation of aquaporin activity offers the possibility to address this question. A classical approach is to alter the expression of aquaporin genes. Down-regulation of genes encoding aquaporins of the Plasma membrane Intrinsic Protein1 (PIP1) and PIP2 subfamilies in Arabidopsis and NtAQP1 in tobacco (Nicotiana tabacum) reduced the ability of these plants to recover after a water deficit treatment (Martre et al., 2002; Siefritz et al., 2002). However, genetic studies have been hindered by phenotypic compensation due to the functional redundancy of aquaporin isoforms in plants (Hachez et al., 2006b). The use of aquaporin inhibitors is a useful tool to investigate the role of root aquaporins in controlling leaf growth. Mercuric chloride (HgCl2), which blocks aquaporins by binding of Hg2+ ions to Cys residues, has been widely used to evaluate the contribution of aquaporins to root water transport (Maggio and Joly, 1995; Carvajal et al., 1996). For instance, Lu and Neumann (1999) have observed that root exposure to 0.5 mm HgCl2 immediately inhibited leaf growth in water-stressed rice (Oryza sativa) seedlings, thereby suggesting a role for aquaporins in controlling leaf growth. However, the signaling mechanisms involved in leaf growth inhibition remained unclear. Side effects of HgCl2 application, such as the reduction of membrane potential in root cortex cells or an impaired cell respiration, restrict its usefulness in physiological studies (Wan and Zwiazek, 1999; Zhang and Tyerman, 1999). Manipulating the root environment is an alternative strategy to efficiently alter Lpr and to assess the significance of such changes on leaf and/or shoot growth. The effects of varying Lpr by root chilling or anoxia are correlated to leaf growth responses (Malone, 1993; Else et al., 1995, 2001), but the interpretation of these results remains controversial in the absence of precise hydraulic measurements.The goal of this study was to determine whether alterations of root aquaporin activity can influence leaf growth in intact, adult plants via effects on Lpr and cell turgor in the leaf elongation zone. In this work, we compared three chemical treatments that target aquaporin inactivation in roots via different mechanisms. Each of them could exert side effects, but provided that all treatments resulted in common responses, the role of aquaporins on leaf growth could be established. We have followed, with a high temporal definition, the consequences of experimentally induced changes in Lpr on water flux, leaf water potential, and leaf elongation rate under different scenarios (three evaporative demands and pressurized or nonpressurized root systems). In addition, we have measured cell turgor in growing leaves using a pressure probe to investigate whether cell turgor responds to changes in root hydraulic conductivity and whether such changes could account for the control of leaf growth.The first treatment used to alter Lpr was acid loading of the solution surrounding the roots, which causes cytosolic acidification in root cortex cells. This triggers the closure of aquaporins due to the protonation of a conserved His residue (Tournaire-Roux et al., 2003). The second treatment was hydrogen peroxide (H2O2) application to the roots, which results in the inhibition of Lpr in maize (Zea mays) by oxidative gating of aquaporins and/or their internalization (Ye et al., 2004; Aroca et al., 2005; Ye and Steudle, 2006; Boursiac et al., 2008). The third treatment was anoxia, an environmental stress that induces an inhibition of Lpr in a large array of species through proton-induced closure of aquaporins (Zhang and Tyerman, 1991; Birner and Steudle, 1993; Else et al., 1995; Tournaire-Roux et al., 2003).  相似文献   

16.
Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca2+-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca2+-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca2+ inhibition of inward K+ currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity.  相似文献   

17.
Aquaporins are water channel proteins that facilitate the movement of water and other small solutes across biological membranes. Plants usually have large aquaporin families, providing them with many ways to regulate the water transport. Some aquaporins are regulated post-translationally by phosphorylation. We have previously shown that the water channel activity of SoPIP2;1, an aquaporin in the plasma membrane of spinach leaves, was enhanced by phosphorylation at Ser115 and Ser274. These two serine residues are highly conserved in all plasma membrane aquaporins of the PIP2 subgroup. In this study we have purified and characterized two protein kinases phosphorylating Ser115 and Ser274 in SoPIP2;1. By anion exchange chromatography, the Ser115 kinase was purified from the soluble protein fraction isolated from spinach leaves. The Ca2+-dependent Ser274 kinase was purified by peptide affinity chromatography using plasma membranes isolated from spinach leaves. When characterized, the Ser115 kinase was Mg2+-dependent, Ca2+-independent and had a pH-optimum at 6.5. In accordance with previous studies using the oocyte expression system, site-directed mutagenesis and kinase and phosphatase inhibitors, the phosphorylation of Ser274, but not of Ser115, was increased in the presence of phosphatase inhibitors while kinase inhibitors decreased the phosphorylation of both Ser274 and Ser115. The molecular weight of the Ser274 kinase was approximately 50 kDa. The identification and characterization of these two protein kinases is an important step towards elucidating the signal transduction pathway for gating of the aquaporin SoPIP2;1.  相似文献   

18.
High temperatures are a major threat to plant growth and development, leading to yield losses in crops. Calcium-dependent protein kinases (CPKs) act as critical components of Ca2+ sensing in plants that transduce rapid stress-induced responses to multiple environmental stimuli. However, the role of CPKs in plant thermotolerance and their mechanisms of action remain poorly understood. To address this issue, tomato (Solanum lycopersicum) cpk28 mutants were generated using a CRISPR-Cas9 gene-editing approach. The responses of mutant and wild-type plants to normal (25°C) and high temperatures (45°C) were documented. Thermotolerance was significantly decreased in the cpk28 mutants, which showed increased heat stress-induced accumulation of reactive oxygen species (ROS) and levels of protein oxidation, together with decreased activities of ascorbate peroxidase (APX) and other antioxidant enzymes. The redox status of ascorbate and glutathione were also modified. Using a yeast two-hybrid library screen and protein interaction assays, we provide evidence that CPK28 directly interacts with cytosolic APX2. Mutations in APX2 rendered plants more sensitive to high temperatures, whereas the addition of exogenous reduced ascorbate (AsA) rescued the thermotolerance phenotype of the cpk28 mutants. Moreover, protein phosphorylation analysis demonstrated that CPK28 phosphorylates the APX2 protein at Thr-59 and Thr-164. This process is suggested to be responsive to Ca2+ stimuli and may be required for CPK28-mediated thermotolerance. Taken together, these results demonstrate that CPK28 targets APX2, thus improving thermotolerance. This study suggests that CPK28 is an attractive target for the development of improved crop cultivars that are better adapted to heat stress in a changing climate.

The protein kinase CPK28 regulates thermotolerance in plants by targeting APX2, thus regulating cellular redox homeostasis.  相似文献   

19.
Aquaporins form a family of water and solute channel proteins and are present in most living organisms. In plants, aquaporins play an important role in the regulation of root water transport in response to abiotic stresses. In this work, we investigated the role of phosphorylation of plasma membrane intrinsic protein (PIP) aquaporins in the Arabidopsis thaliana root by a combination of quantitative mass spectrometry and cellular biology approaches. A novel phosphoproteomics procedure that involves plasma membrane purification, phosphopeptide enrichment with TiO(2) columns, and systematic mass spectrometry sequencing revealed multiple and adjacent phosphorylation sites in the C-terminal tail of several AtPIPs. Six of these sites had not been described previously. The phosphorylation of AtPIP2;1 at two C-terminal sites (Ser(280) and Ser(283)) was monitored by an absolute quantification method and shown to be altered in response to treatments of plants by salt (NaCl) and hydrogen peroxide. The two treatments are known to strongly decrease the water permeability of Arabidopsis roots. To investigate a putative role of Ser(280) and Ser(283) phosphorylation in aquaporin subcellular trafficking, AtPIP2;1 forms mutated at either one of the two sites were fused to the green fluorescent protein and expressed in transgenic plants. Confocal microscopy analysis of these plants revealed that, in resting conditions, phosphorylation of Ser(283) is necessary to target AtPIP2;1 to the plasma membrane. In addition, an NaCl treatment induced an intracellular accumulation of AtPIP2;1 by exerting specific actions onto AtPIP2;1 forms differing in their phosphorylation at Ser(283) to induce their accumulation in distinct intracellular structures. Thus, the present study documents stress-induced quantitative changes in aquaporin phosphorylation and establishes for the first time a link with plant aquaporin subcellular localization.  相似文献   

20.
Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3 enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号