首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of increased photon flux (100???mol?m?2 s?1), ventilation, and standard in vitro culture (40???mol?m?2 s?1) with no ventilation were investigated on the physiological and histological characteristics of microshoots of Gevuina avellana. The increase in photon flux (light treatment) produced significant improvement in the fluorescence parameters of photochemical quenching, non-photochemical quenching, electron transport rate and photochemical efficiency of PSII, compared to the ventilation and control treatments. Nursery plants showed similar values compared to the microshoots in the light treatment, indicating that the plants in the light treatment developed a management for dissipating excess light. Moreover, chlorophyll a and b concentrations increased significantly in both light and ventilation treatments. The chl a/chl b ratio decreased in the ventilation treatment compared to the control treatment. Similar results were found for soluble carbohydrates. Finally, both the photon flux increase and ventilation had a positive effect on foliar anatomy, showing a more organized mesophyll and a better development of the palisade mesophyll compared to the control treatment. The changes observed in the microshoots with regards to foliar anatomy and photochemical behavior were very similar to nursery plants.  相似文献   

2.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

3.
The aim of the work was to find the optimal photon irradiance for the growth of green cells of Haematococcus pluvialis and to study the interrelations between changes in photochemical parameters and pigment composition in cells exposed to photon irradiances between 50 and 600?µmol?m?2?s?1 and a light:dark cycle of 12:12?h. Productivity of cultures increased with irradiance. However, the rate of increase was higher in the range 50–200?µmol??2?s?1. The carotenoid content increased with increasing irradiance, while the chlorophyll content decreased. The maximum quantum yield of PSII (Fv/Fm) gradually declined from 0.76 at the lowest irradiance of 50?µmol??2?s?1 to 0.66 at 600?µmol??2?s?1. Photosynthetic activity showed a drop at the end of the light period, but recovered fully during the following dark phase. A steep increase in non-photochemical quenching was observed when cultures were grown at irradiances above 200?µmol??2?s?1. A sharp increase in the content of secondary carotenoids also occurred above 200?µmol?m?2?s?1. According to our results, with H. pluvialis green cells grown in a 5-cm light path device, 200?µmol??2?s?1 was optimal for growth, and represented a threshold above which important changes in both photochemical parameters and pigment composition occurred.  相似文献   

4.
Photosynthetic response to high light was determined for Bull kelp, Nereocystis luetkeana (K. Mertens) Postels and Ruprecht in order to understand how this species is affected by short‐term fluctuations in irradiance. Exposure of N. luetkeana blades to high intensity photosynthetically active radiation (1000 µmol photons m?2 s–1) caused increased non‐photochemical quenching of fluorescence and higher de‐epoxidation ratios for xanthophyll pigments indicating that energy‐quenching xanthophylls were used to protect blades against photoinhibition. Despite initiation of these photoprotective mechanisms, maximum photochemical efficiency of photosystem II (Fv/Fm) decreased 40% in response to a 60 min exposure to 1000 µmol photons m?2 s–1 photosynthetically active radiation indicating that photoinhibition had occurred. Light‐saturated rates of oxygen evolution were not changed significantly by the high light treatment. Recovery of maximum photochemical efficiency of photosystem II to within 8% of initial values occurred after a 300‐min dim light period. Younger sections of the blades were slightly more susceptible to high light damage than older sections. Middle sections of the blades were more prone to light‐induced damage at water temperatures of 7°C or 18°C, as compared to 13°C. Exposure to biologically effective ultraviolet‐B radiation (UV‐Bbe) (up to 4.5 kJ m–2 day–1) in photoinhibitory light conditions did not significantly affect light‐induced damage to photosystem II.  相似文献   

5.
We aimed to find out relations among nonphotochemical quenching (NPQ), gross photosynthetic rate (P G), and photoinhibition during photosynthetic light induction in three woody species (one pioneer tree and two understory shrubs) and four ferns adapted to different light regimes. Pot-grown plants received 100% and/or 10% sunlight according to their light-adaptation capabilities. After at least four months of light acclimation, CO2 exchange and chlorophyll fluorescence were measured simultaneously in the laboratory. We found that during light induction the formation and relaxation of the transient NPQ was closely related to light intensity, light-adaption capability of species, and P G. NPQ with all treatments increased rapidly within the first 1–2 min of the light induction. Thereafter, only species with high P G and electron transport rate (ETR), i.e., one pioneer tree and one mild shade-adapted fern, showed NPQ relaxing rapidly to a low steady-state level within 6–8 min under PPFD of 100 μmol(photon) m?2 s?1 and ambient CO2 concentration. Leaves with low P Gand ETR, regardless of species characteristics or inhibition by low CO2 concentration, showed slow or none NPQ relaxation up to 20 min after the start of low light induction. In contrast, NPQ increased slowly to a steady state (one pioneer tree) or it did not reach the steady state (the others) from 2 to 30 min under PPFD of 2,000 μmol m?2 s?1. Under high excess of light energy, species adapted to or plants acclimated to high light exhibited high NPQ at the initial 1 or 2 min, and showed low photoinhibition after 30 min of light induction. The value of fastest-developing NPQ can be quickly and easily obtained and might be useful for physiological studies.  相似文献   

6.
Genetically modified potato (Solanum tuberosum L. cv. Desiree) and tobacco (Nicotiana tabacum cv. Samsun N.N.) plants were used to analyze the effects exerted by the chloroplastic (cp) fructose- 1,6-bisphosphatase (FBPase) on the regulation of light energy discrimination at the level of photosystem II. The cp-FBPase activity was progressively inhibited by an mRNA antisense to this FBPase. The chlorophyll fluorescence quenching parameters of these transgenic plants were compared to those of wild-type and transgenic plants that were acclimated to low temperatures. In particular various lines of the transgenic potato and tobacco plants were exposed to a temperature treatment of 10 and 20°C for 10 days. Light intensities were kept low to reduce photoinhibition so that we could analyze exclusively the effects of a modification in the carbon fixation cycle on the chlorophyll fluorescence quenching parameters. The photon flux densities (PFDs) employed at the level of the middle leaves of all plants were set to two different values of 10 μmol m?2 s?1 and 50 μmol m?2 s?1. Subsequent to this 10-day acclimation the chlorophyll-fluorescence parameters of all plants were measured. Photoinhibition as expressed by the Fy/Fm ratio was minor in plants subjected to a PFD of 10 μmol m?2 s?1. Higher photon fluence rates of 50 μmol m?2 s?1 at temperatures of 10°C gave rise to a significant reduction in the Fy/Fm ratios obtained from the transgenic plants which were characterized by a restriction in cp-FBPase capacity to 20% of normal activity. Furthermore, a progressive inhibition of the cp-FBPase activity induced an amplified nonphotochemical quenching of chlorophyll fluorescence with in the genetically manipulated species (except at 10°C and 50 μmol m?2 s?1). The increase in nonphotochemical quenching depended upon light and temperature. Photochemical quenching of light quanta within the antisense plants declined relative to that in the wild type. To further characterize the mechanisms producing higher levels of nonphotochemical fluorescence quenching. we analyzed several of the xanthophyll cycle pigments. The deepoxidation state of the xanthophyll cycle pigments in potato plants increased with attenuating FBPase activities under all conditions. For tobacco plants, this elevation of the deepoxidation state was only observed at a PFD of 50 μmol m?2 s?1.  相似文献   

7.
Photoprotection mechanisms protect photosynthetic organisms, especially under stress conditions, against photodamage that may inhibit photosynthesis. We investigated the effects of short-term immersion in hypo- and hypersalinity sea water on the photosynthesis and xanthophyll cycle in Sargassum fusiforme (Harvey) Setchell. The results indicated that under moderate light [110 μmol(photon) m?2 s?1], the effective quantum yield of PSII was not reduced in S. fusiforme fronds after 1 h in hyposalinity conditions, even in fresh water, but it was significantly affected by extreme hypersalinity treatment (90‰ sea water). Under high light [HL, 800 μmol(photon) m?2 s?1], photoprotective mechanisms operated efficiently in fronds immersed in fresh water as indicated by high reversible nonphotochemical quenching of chlorophyll fluorescence (NPQ) and de-epoxidation state; the quantum yield of PSII recovered during the subsequent relaxation period. In contrast, fronds immersed in 90‰ sea water did not withstand HL, barely developed reversible NPQ, and accumulated little antheraxanthin and zeaxanthin during HL, while recovery of the quantum yield of PSII was severely inhibited during the subsequent relaxation period. The data provided concrete evidence supporting the short-term tolerance of S. fusiforme to immersion in fresh water compared to hypersalinity conditions. The potential practical implications of these results were also discussed.  相似文献   

8.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

9.
 The impact of ozone fumigation on chlorophyll a fluorescence parameters and chlorophyll content of birch trees grown at high and low fertilization were studied for 6-, 8-, and 12-week old leaves. Fluorescence parameters were measured with a portable fluorometer with its fibre optics tightly inserted in a gas exchange cuvette at light intensities from 0 to 220 μmol photons m−2 s−1. Ozone caused significant changes of primary photosynthetic reactions: a decrease of the quantum yield of photosystem II and an increase of non-photochemical quenching. In all leaves a biphasic light response of non-photochemical quenching was observed. Ozone fumigation shifted the onset of the second phase from a PFD of about 60 μmol m−2 s−1 to about 30 μmol m−2 s−1. While the fertilizer concentration had no influence on this character, high fertilization supply of plants partially reduced O3-induced damage. The light responses of Ft, Fm′ and NPQ observed in birch leaves grown in O3-free air indicate the existence of at least two different processes governing energy conversion of the photosynthetic apparatus at PS II in the range of PFD 0–200 μmol photons m−2 s−1. The first phase was attributed to a rather slowly relaxing type of non-photochemical quenching, which, at least at low PFD, is thought to be related to a state 1–2 transition. The further changes of the fluorescence parameters studied at higher PFD might be explained by an increase of energy-dependent quenching, connected with the energization of the thylakoid membrane and zeaxanthin synthesis. A major effect of ozone treatment was a lowering of PS II quantum yield. This reflects a reduction of PS II electron transport and corresponds to the reduction of CO2-fixation observed in ozonated leaves. Received: 24 September 1996 / Accepted: 27 January 1999  相似文献   

10.
We investigated the effects of low-dose inplanta irradiation on red pepper plants treated with gamma rays of 2, 4, 8, and 16 Gy. Growth was stimulated at 2 and 4 Gy but inhibited at 8 and 16 Gy. Photochemical quenching (qP) increased slightly in all treatment groups for 1 d after irradiation (DAl), whereas non-photochemical quenching (NPQ) decreased more noticeably. These changes in qP and NPQ were transient and had almost recovered to the control level by 2 DAl. Although carotenoid pigments also fluctuated during the experimental period, chlorophylls were almost entirely insensitive to the gamma rays. Irradiation also partially protected leaves from a decrease in photochemical efficiency (Fv/Fm) under conditions of UV-B (2.2 W m-2) and high light intensity (800 μmol m-2 s-1). This enhanced stress resistance could be partly explained by higher levels of SOD and APX activities, as well as ascorbate content. Our results demonstrate for the first time that the carotenoid pigments are the most radio-sensitive and fastest recovering compounds in plants, and that SOD, APX, and ascorbate are important inducible factors for improving stress resistance through the use ofin planta gamma-irradiation.  相似文献   

11.
《Journal of bryology》2013,35(1):151-158
Abstract

The concentration of chlorophyll a, b, and total chlorophyll have been monitored on a seasonal basis in Brachythecium rutabulum. Total chlorophyll increases during summer full canopy conditions from 1.70 mg chl g?1 on 8 May to 11.1 mg chl g?1 on 11 October. Photosynthetic-illumination curves show that during this period light saturation declines from 200 μmol m?2s?1 to 30 μmol m?2s?1 by 6 July, and light compensation falls dramatically from 65 μmol m?2s?1 to 4 μmol m?2s?1. The data also appear to support the conclusion that there is concurrently an increase in the density of photosynthetic units by the end of September.  相似文献   

12.
In photosynthesis, light energy is absorbed by light‐harvesting complexes and used to drive photochemistry. However, a fraction of absorbed light is lost to non‐photochemical quenching (NPQ) that reflects several important photosynthetic processes to dissipate excess energy. Currently, estimates of NPQ and its individual components (qE, qI, qZ and qT) are measured from pulse‐amplitude‐modulation (PAM) measurements of chlorophyll fluorescence yield and require measurements of the maximal yield of fluorescence in fully dark‐adapted material (Fm), when NPQ is assumed to be negligible. Unfortunately, this approach requires extensive dark acclimation, often precluding widespread or high‐throughput use, particularly under field conditions or in imaging applications, while introducing artefacts when Fm is measured in the presence of residual photodamaged centres. To address these limitations, we derived and characterized a new set of parameters, NPQ(T), and its components that can be (1) measured in a few seconds, allowing for high‐throughput and field applications; (2) does not require full relaxation of quenching processes and thus can be applied to photoinhibited materials; (3) can distinguish between NPQ and chloroplast movements; and (4) can be used to image NPQ in plants with large leaf movements. We discuss the applications benefits and caveats of both approaches.  相似文献   

13.
Michael Bradbury  Neil R. Baker 《BBA》1984,765(3):275-281
Estimations of the changes in the reduction-oxidation state of Photosystem II electron acceptors in Phaseolus vulgaris leaves were made during the slow decline in chlorophyll fluorescence emission from the maximal level at P to the steady-state level at T. The relative contributions of photochemical and non-photochemical processes to the fluorescence quenching were determined from these data. At a low photon flux density of 100 μmol · m?2 · s?1, non-photochemical quenching was the major contributor to the fluorescence decline from P to T, although large charges were observed in photochemical quenching immediately after P. On increasing the light intensity 10-fold, the contribution of photochemical processes to fluorescence quenching was markedly diminished, with nearly all the P-to-T fluorescence decline being attributable to changes in non-photochemical quenching. The possible factors responsible for changes in non-photochemical quenching within the leaves are discussed.  相似文献   

14.
Kurasová  I.  Čajánek  M.  Kalina  J.  Špunda  V. 《Photosynthetica》2000,38(4):513-519
The adaptation of barley (Hordeum vulgare L. cv. Akcent) plants to low (LI, 50 µmol m–2 s–1) and high (HI, 1000 µmol m–2 s–1) growth irradiances was studied using the simultaneous measurements of the photosynthetic oxygen evolution and chlorophyll a (Chl a) fluorescence at room temperature. If measured under ambient CO2 concentration, neither increase of the oxygen evolution rate (P) nor enhancement of non-radiative dissipation of the absorbed excitation energy within photosystem 2 (PS2) (determined as non-photochemical quenching of Chl a fluorescence, NPQ) were observed for HI plants compared with LI plants. Nevertheless, the HI plants exhibited a significantly higher proportion of QA in oxidised state (estimated from photochemical quenching of Chl a fluorescence, qP), by 49–102 % at irradiances above 200 µmol m–2 s–1 and an about 1.5 fold increase of irradiance-saturated PS2 electron transport rate (ETR) as compared to LI plants. At high CO2 concentration the degree of P stimulation was approximately three times higher for HI than for LI plants, and the irradiance-saturated P values at irradiances of 2 440 and 2 900 µmol m–2 s–1 were by 130 and 150 % higher for HI plants than for LI plants. We suggest that non-assimilatory electron transport dominates in the adaptation of the photosynthetic apparatus of barley grown at high irradiances under ambient CO2 rather than an increased NPQ or an enhancement of irradiance-saturated photosynthesis.  相似文献   

15.
This work aimed to evaluate if gas exchange and PSII photochemical activity in maize are affected by different irradiance levels during short-term exposure to elevated CO2. For this purpose gas exchange and chlorophyll a fluorescence were measured on maize plants grown at ambient CO2 concentration (control CO2) and exposed for 4 h to short-term treatments at 800 μmol(CO2) mol−1 (high CO2) at a photosynthetic photon flux density (PPFD) of either 1,000 μmol m−2 s−1 (control light) or 1,900 μmol m−2 s−1 (high light). At control light, high-CO2 leaves showed a significant decrease of net photosynthetic rate (P N) and a rise in the ratio of intercellular to ambient CO2 concentration (C i/C a) and water-use efficiency (WUE) compared to control CO2 leaves. No difference between CO2 concentrations for PSII effective photochemistry (ΦPSII), photochemical quenching (qp) and nonphotochemical quenching (NPQ) was detected. Under high light, high-CO2 leaves did not differ in P N, C i/C a, ΦPSII and NPQ, but showed an increase of WUE. These results suggest that at control light photosynthetic apparatus is negatively affected by high CO2 concentration in terms of carbon gain by limitations in photosynthetic dark reaction rather than in photochemistry. At high light, the elevated CO2 concentration did not promote an increase of photosynthesis and photochemistry but only an improvement of water balance due to increased WUE.  相似文献   

16.
Ten anthocyanin components have been detected in roots of purple sweet potato (Ipomoea batatas Lam.) by high‐performance liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry. All the anthocyanins were exclusively cyanidins or peonidin 3‐sophoroside‐5‐glucosides and their acylated derivatives. The total anthocyanin content in purple sweet potato powder obtained by solid‐phase extraction was 66 mg g?1. A strong capacity of purple sweet potato anthocyanins (PSPA) to scavenge reactive oxygen species (superoxide, hydroxyl radical) and the stable 1,1‐diphenyl‐2‐picrylhydrazyl organic free radical was found in vitro using the electron spin resonance technique. To determine the functional roles of anthocyanins in leaves in vivo, for the first time, supplemental anthocyanins were infiltrated into leaves of Arabidopsis thaliana double mutant of the ecotype Landsberg erecta (tt3tt4) deficient in anthocyanin biosynthesis. Chlorophyll fluorescence imaging showed that anthocyanins significantly ameliorated the inactivation of photosystems II during prolonged high‐light (1300 µmol m?2 s?1) exposure. Comet assay of DNA revealed an obvious role of supplemental PSPA in alleviating DNA damage by high light in leaves. Our results suggest that anthocyanins could function in vitro and in vivo to alleviate the direct or indirect oxidative damage of the photosynthetic apparatus and DNA in plants caused by high‐light stress.  相似文献   

17.
Cold-hardening of winter rye (Secale cereale L. cv. Musketeer) increased dark respiration from ?2.2 to ?3.9 μmol O2 m?2s?1 and doubled light-and CO2-saturated photosynthesis at 20°C from 18.1 to 37.0μmol O2 m?2 s?1 We added oligomycin at a concentration that specifically inhibits oxidative phosphorylation to see whether the observed increase in dark respiration reflected an increase in respiration in the light, and whether this contributed to the enhanced photosynthesis of cold-hardened leaves. Oligomycin inhibited light- and CO2-saturated rates of photosynthesis in non-hardened and cold-hardened leaves by 14 and 25%, respectively, and decreased photochemical quenching of chlorophyll a fluorescence to a greater degree in cold-hardened than in non-hardened leaves. These data indicate an increase both in the rate of respiration in the light, and in the importance of respiration to photosynthesis following cold-hardening. Analysis of metabolite pools indicated that oligomycin inhibited photosynthesis by limiting regeneration of ribulose-1,5-bisphosphate. This limitation was particularly severe in cold-hardened leaves, and the resulting low 3-phospho-glycerate pools led to a feed-forward inhibition of sucrose-phosphate synthase activity. Thus, it does not appear that oxidative phosphorylation supports the increase in photo-synthetic O2 evolution following cold-hardening by increasing the availability of cytosolic ATP. The data instead support the hypothesis that the mitochondria function in the light by using the reducing equivalents generated by non-cyclic photosynthetic electron transport.  相似文献   

18.
Chlorophyll fluorescence analysis is one of the most convenient and widespread techniques used to monitor photosynthesis performance in plants. In this work, after a brief overview of the mechanisms of regulation of photosynthetic electron transport and protection of photosynthetic apparatus against photodamage, we describe results of our study of the effects of actinic light intensity on photosynthetic performance in Tradescantia species of different ecological groups. Using the chlorophyll fluorescence as a probe of photosynthetic activity, we have found that the shade-tolerant species Tradescantia fluminensis shows a higher sensitivity to short-term illumination (≤20 min) with low and moderate light (≤200 μE m−2 s−1) as compared with the light-resistant species Tradescantia sillamontana. In T. fluminensis, non-photochemical quenching of chlorophyll fluorescence (NPQ) and photosystem II operational efficiency (parameter ΦPSII) saturate as soon as actinic light reaches ≈200 μE m−2 s−1. Otherwise, T. sillamontana revealed a higher capacity for NPQ at strong light (≥800 μE m−2 s−1). The post-illumination adaptation of shade-tolerant plants occurs slower than in the light-resistant species. The data obtained are discussed in terms of reactivity of photosynthetic apparatus to short-term variations of the environment light.  相似文献   

19.

Maize is a low-temperature (LT)-sensitive plant and its physiological responses towards LT of temperate regions developed is an adaptive trait. To further our understanding about the response of maize to LT at the physiological and photosynthesis level, we conducted Infrared Gas Analysis (IRGA using LICOR6400-XT in 45-day-old grown two maize genotypes, one from temperate region (Gurez-Kashmir Himalayas), viz., Gurez local (Gz local), and another from tropics (Gujarat), viz., GM6. This study was carried out to evaluate the underlying physiological mechanisms in the two differentially temperature-tolerant maize genotypes. Net photosynthetic rate (A/PN), 18.253 in Gz local and 25.587 (µmol CO2 m?2 s?1) in GM6; leaf conductance (gs), 0.0102 in Gz local and 0.0566 (mmol H2O m?2 s?1) in GM6; transpiration rate (E), 0.5371 in Gz local and 2.9409 (mmol H2O m?2 s?1) in GM6; and water use efficiency (WUE), 33.9852 in Gz local and 8.7224 (µmol CO2 mmol H2O?1) in GM6, were recorded under ambient conditions. Also, photochemical efficiency of photosystem II (PSII) (Fv/Fm), 0.675 in Gz local and 0.705 in GM6; maximum photochemical efficiency (Fv′/Fm′), 0.310234 in Gz local and 0.401391 in GM6; photochemical quenching (qP), 0.2375 in Gz local and 0.2609 in GM6; non-photochemical quenching (NPQ), 2.0036 in Gz local and 1.1686 in GM6; effective yield of PSII (ФPSII), 0.0789 in Gz local and 0.099 in GM6; and electron transport rate (ETR), 55.3152 in Gz local and 68.112 in GM6, were also evaluated in addition to various response curves, like light intensities and temperature. We observed that light response curves show the saturation light intensity requirement of 1600 µmol for both the genotypes, whereas temperature response curves showed the optimum temperature requirement for Gz local as 20 °C and for GM6 it was found to be 35 °C. The results obtained for each individual parameter and other correlational studies indicate that IRGA forms a promising route for quick and reliable screening of various stress-tolerant valuable genotypes, forming the first study of its kind.

  相似文献   

20.
Fluvial biofilms are subject to multistress situations in natural ecosystems, such as the co‐occurrence of light intensity changes and metal toxicity. However, studies simultaneously addressing both factors are rare. This study evaluated in microcosm conditions the relationship between short‐term light intensity changes and Zn toxicity on fluvial biofilms with long‐term photoacclimation to different light conditions. Biofilms that had long‐term photoacclimation to 25 μmol photons · m?2 · s?1 (low light [LL] biofilms), 100 μmol photons · m?2 · s?1 (medium light [ML] biofilms), and 500 μmol photons · m?2 · s?1 (high light [HL] biofilms) were characterized by different structural (Chlorophyll‐a [Chl‐a], total biomass‐AFDW, EPS, algal groups, and diatom taxonomy) and physiological attributes (ETR‐I curves and photosynthetic pigments). HL biofilms showed higher light saturation intensity and a higher production of xanthophylls than LL biofilms. In contrast, LL biofilms had many structural differences; a higher proportion of diatoms and lower AFDW and EPS contents than ML and HL biofilms. A clear effect of light intensity changes on Zn toxicity was also demonstrated. Zn toxicity was enhanced when a sudden increase in light intensity also occurred, mainly with LL biofilms, causing higher inhibition of both the Φ′PSII and the ΦPSII. A decoupling of NPQ from de‐epoxidation reaction (DR) processes was also observed, indicating substantial damage to photoprotective mechanisms functioning in biofilms (i.e., xanthophyll cycle of diatoms) due to Zn toxicity. This study highlights the need to take into account environmental stress (e.g., light intensity changes) to better assess the environmental risks of chemicals (e.g., metals).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号