首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The responses of photosynthesis, transpiration and leaf conductance to changes in vapour pressure deficit were followed in well-watered plants of the herbaceous species, Helianthus annuus, Helianthus nuttallii, Pisum sativum and Vigna unguiculata, and in the woody species having either sclerophyllous leaves, Arbutus unedo, Nerium oleander and Pistacia vera, or mesomorphic leaves, Corylus avellana, Gossypium hirsutum and Prunus dulcis. When the vapour pressure deficit of the air around a single leaf in a cuvette was varied from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, while holding the remainder of the plant at a vapour presure deficit of 10 Pa kPa-1, the leaf conductance and net photosynthetic rate of the leaf decreased in all species. The rate of transpiration increased initially with increase in vapour pressure deficit in all species, but in several species a maximum transpiration rate was observed at 20 to 25 Pa kPa-1. Concurrent measurements of the leaf water potential by in situ psychrometry showed that an increase in the vapour pressure deficit decreased the leaf water potential in all species. The decrease was greatest in woody species, and least in herbaceous species. When the vapour pressure deficit around the remainder of the plant was increased while the leaf in the cuvette was exposed to a low and constant vapour pressure deficit, similar responses in both degree and magnitude in the rates of transpiration and leaf conductance were observed in the remainder of the plant as those occurring when the vapour pressure deficit around the single leaf was varied. Increasing the external vapour pressure deficit lowered the water potential of the leaf in the cuvette in the woody species and induced a decrease in leaf conductance in some, but not all, speies. The decrease in leaf conductance with decreasing water potential was greater in the woody species when the vapour pressure deficit was increased than when it remained low and constant, indicating that changing the leaf-to-air vapour pressure difference had a direct effect on the stomata in these species. The low hydraulic resistance and maintenance of a high leaf water potential precluded such an analysis in the herbaceous species. We conclude that at least in the woody species studied, an increase in the vapour pressure deficit around a leaf will decrease leaf gas exchange through a direct effect on the leaf epidermis and sometimes additionally through a lowering of the mesophyll water potential.  相似文献   

2.
We explored potential of morphological and anatomical leaf traits for predicting ecophysiological key functions in subtropical trees. We asked whether the ecophysiological parameters stomatal conductance and xylem cavitation vulnerability could be predicted from microscopy leaf traits. We investigated 21 deciduous and 19 evergreen subtropical tree species, using individuals of the same age and from the same environment in the Biodiversity‐Ecosystem Functioning experiment at Jiangxi (BEF‐China). Information‐theoretic linear model selection was used to identify the best combination of morphological and anatomical predictors for ecophysiological functions. Leaf anatomy and morphology strongly depended on leaf habit. Evergreen species tended to have thicker leaves, thicker spongy and palisade mesophyll, more palisade mesophyll layers and a thicker subepidermis. Over 50% of all evergreen species had leaves with multi‐layered palisade parenchyma, while only one deciduous species (Koelreuteria bipinnata) had this. Interactions with leaf habit were also included in best multi‐predictor models for stomatal conductance (gs) and xylem cavitation vulnerability. In addition, maximum gs was positively related to log ratio of palisade to spongy mesophyll thickness. Vapour pressure deficit (vpd) for maximum gs increased with the log ratio of palisade to spongy mesophyll thickness in species having leaves with papillae. In contrast, maximum specific hydraulic conductivity and xylem pressure at which 50% loss of maximum specific xylem hydraulic conductivity occurred (Ψ50) were best predicted by leaf habit and density of spongy parenchyma. Evergreen species had lower Ψ50 values and lower maximum xylem hydraulic conductivities. As hydraulic leaf and wood characteristics were reflected in structural leaf traits, there is high potential for identifying further linkages between morphological and anatomical leaf traits and ecophysiological responses.  相似文献   

3.
The internal conductance to CO2 supply from substomatal cavitiesto sites of carboxylation poses a large limitation to photosynthesis.It is known that internal conductance is decreased by soil waterdeficits, but it is not known if it is affected by atmosphericwater deficits (i.e. leaf to air vapour pressure deficit, VPD).The aim of this paper was to examine the responses of internalconductance to atmospheric and soil water deficits in seedlingsof the evergreen perennial Eucalyptus regnans F. Muell and theherbaceous plants Solanum lycopersicum (formerly Lycopersiconesculentum) Mill. and Phaseolus vulgaris L. Internal conductancewas estimated with the variable J method from concurrent measurementsof gas exchange and fluorescence. In all three species steady-statestomatal conductance decreased by 30% as VPD increased from1 kPa to 2 kPa. In no species was internal conductance affectedby VPD despite large effects on stomatal conductance. In contrast,soil water deficits decreased stomatal conductance and internalconductance of all three species. Decreases in stomatal andinternal conductance under water deficit were proportional,but this proportionality differed among species, and thus therelationship between stomatal and internal conductance differedamong species. These findings indicate that soil water deficitsaffect internal conductance while atmospheric water deficitsdo not. The reasons for this distinction are unknown but areconsistent with soil and atmospheric water deficits having differingeffects on leaf physiology and/or root–shoot communication. Key words: Carbon dioxide, drought, internal conductance, mesophyll conductance, photosynthesis, stomatal conductance, transfer conductance, vapour pressure deficit, water deficit Received 11 October 2007; Revised 9 November 2007 Accepted 15 November 2007  相似文献   

4.
Environmental and physiological regulation of transpiration were examined in several gap-colonizing shrub and tree species during two consecutive dry seasons in a moist, lowland tropical forest on Barro Colorado Island, Panama. Whole plant transpiration, stomatal and total vapor phase (stomatal + boundary layer) conductance, plant water potential and environmental variables were measured concurrently. This allowed control of transpiration (E) to be partitioned quantitatively between stomatal (g s) and boundary layer (g b) conductance and permitted the impact of invividual environmental and physiological variables on stomatal behavior and E to be assessed. Wind speed in treefall gap sites was often below the 0.25 m s–1 stalling speed of the anemometer used and was rarely above 0.5 m s–1, resulting in uniformly low g b (c. 200–300 mmol m–2 s–1) among all species studied regardless of leaf size. Stomatal conductance was typically equal to or somewhat greater than g b. This strongly decoupled E from control by stomata, so that in Miconia argentea a 10% change in g s when g s was near its mean value was predicted to yield only a 2.5% change in E. Porometric estimates of E, obtained as the product of g s and the leaf-bulk air vapor pressure difference (VPD) without taking g b into account, were up to 300% higher than actual E determined from sap flow measurements. Porometry was thus inadequate as a means of assessing the physiological consequences of stomatal behavior in different gap colonizing species. Stomatal responses to humidity strongly limited the increase in E with increasing evaporative demand. Stomata of all species studied appeared to respond to increasing evaporative demand in the same manner when the leaf surface was selected as the reference point for determination of external vapor pressure and when simultaneous variation of light and leaf-air VPD was taken into account. This result suggests that contrasting stomatal responses to similar leaf-bulk air VPD may be governed as much by the external boundary layer as by intrinsic physiological differences among species. Both E and g s initially increased sharply with increasing leaf area-specific total hydraulic conductance of the soil/root/leaf pathway (G t), becoming asymptotic at higher values of G t. For both E and g s a unique relationship appeared to describe the response of all species to variations in G t. The relatively weak correlation observed between g s and midday leaf water potential suggested that stomatal adjustment to variations in water availability coordinated E with water transport efficiency rather than bulk leaf water status.  相似文献   

5.
Mediavilla  S.  Santiago  H.  Escudero  A. 《Photosynthetica》2002,40(4):553-559
In the evergreen Quercus rotundifolia and the co-existing deciduous Q. faginea we studied the diurnal variations in photosynthetic capacity (P max), measured as the rate of O2 evolution at photon and CO2 saturation, and in the rate of net CO2 assimilation (P N) in the field during the period of maximum photosynthetic activity. Our aim was to check the contribution of stomatal and non-stomatal limitations to the diurnal variation in photosynthesis, and to study the differences between both species. Q. faginea leaves displayed lower mass per unit area and higher nitrogen content than Q. rotundifolia leaves. The maximum stomatal conductance and P N in the field were higher in Q. faginea than in Q rotundifolia. Also P max of Q. faginea was higher than that of Q. rotundifolia. Both species attained in the field a high percentage of the P max (around 82 % for Q. faginea and 73 % for Q. rotundifolia). This indicates reduced stomatal limitation of photosynthesis under favourable conditions, especially in Q. faginea. P N underwent a sharp decrease towards mid-day in association with increase in the atmospheric vapour pressure deficit and decrease in the leaf water potential. P max was also reduced during mid-day. This demonstrated the contribution of mesophyll limitations to the P N in the two species under stress. The mesophyll limitation of photosynthesis seemed to be similar for both species, independently from the differences in leaf traits between them.  相似文献   

6.
Abstract It had been hypothesized that if daily CO2 assimilation is to be maximized at a given level of daily transpiration, stomatal apertures should change during the day so that the gain ratio (?A/?g)/(?E/?g) remains constant. These partial differentials describe the sensitivity of assimilation rate (A) and transpiration rate (E) to changes in stomatal conductance (g). Experiments were conducted to determine whether stomata respond to environment in a manner which results in constant gain ratios. Gas–exchange measurements were made of the stomatal and photosynthetic responses of Vigna unguiculata L. Walp. in controlled environments. Leaf conductance to water vapour responded to step changes in temperature and humidity so that for different steady-state conditions the gain ratio remained constant on all but one day. Depletion of water in the root zone resulted in day-to-day increases in gain ratio which were correlated with decreases in maximum leaf conductance to water vapour. The significance of the results for plant adaptation and stomatal mechanisms, and methods for measuring the gain ratio, are discussed.  相似文献   

7.
In the tropics, old-growth forests are converted to other land cover types at a high rate and young secondary forest may gain in importance. Information on associated changes in leaf gas exchange and other leaf traits can be valuable for modelling biogeochemical fluxes under altered land-use patterns. We studied in situ photosynthetic parameters and stomatal conductance for water vapour in eight abundant tree species of young secondary forest and eight tree species of natural old-growth forest in Central Sulawesi, Indonesia. In sun leaves, the average maximal stomatal conductance (g smax) in the secondary forest (SF) species was 2.1 times higher than in the old-growth forest (OGF) species. Species with a high g smax reduced g s sharply when vapour pressure deficit of the air increased, whereas species with a low g smax were much less sensitive to air humidity. For area-based photosynthetic capacity (A max-area), the SF species had a 2.3 times higher average than the OGF species. For both, g smax and A max-area the variation among species was higher in the OGF than in the SF. When all tree species (n=16) are considered, species means of specific leaf area (SLA), leaf N concentration and leaf P concentration were significantly correlated with g smax and A max-area. The strong correlation between A max-area and foliar P (r 2=0.8) is remarkable as the alluvial soils in the study region are rich in nutrients. If the eight OGF species are analysed separately, the only significant correlation was observed between SLA and mass-based A max; in the SF species strong correlations were found between leaf size and A max-area and g smax. These results show that the conversion of old-growth forest to young secondary forest in Sulawesi significantly alters tree leaf gas exchange characteristics and that chemical and structural leaf traits can be used for the prediction of these changes. The best correlations between leaf gas exchange parameters and leaf traits were obtained by different traits in the SF species, the OGF species and the entire pool of studied species.  相似文献   

8.
Do stomata respond to relative humidity?   总被引:24,自引:12,他引:12  
  相似文献   

9.
The response curves of leaf photosynthesis to varying light, temperature and leaf-to-air vapour pressure deficit were measured in the C3 plants Flaveria pringlei and Oryza sativa in normal air with a computerized open infrared gas analysis (IRGA) system, and the photochemical efficiency of photosystem II, described as (1–F,/F′m) after Genty. Briantais & Baker (1989, Biochimica et Biophysica Acta 990, 87–92), was simultaneously measured with a modulated fluorometer. A model was written for rates of CO2 fixation as a function of the true rate of O2 evolution measured by fluorescene analysis (Jo2), mesophyll conductance and intercellular CO2 partial pressure. A second model was developed for rates of CO2 fixation as a function of Jo2, mesophyll conductance and stomatal conductance. In the latter case, leaf stomatal conductance was simulated using the stomatal model proposed by Leuning (1995, Plant, Cell and Environment 18 , 339–355). The rates of CO2 fixation predicted from the models were similar to rates measured by IRGA. The results indicate that there is potential to measure CO2 fixation in C3 plants by combining the non-invasive measurement of Jo2 by chlorophyll fluorescence analysis with the stomatal conductance model.  相似文献   

10.
Daily and annual courses of leaf transpiration, stomatal conductance and shoot water potential of four Quercus suber individuals were compared in a semi-natural stand in southwest Portugal, from spring 1989 to early summer 1990.The trees investigated showed annual patterns typical of evergreen sclerophyllous species but varied in their range of stomatal operation. This appeared to be related to differences in hydraulic conductivity in the root-to-leaf pathway.Maximum stomatal conductance and transpiration rates occurred from March to June.Water stress was found to be moderate and winter cold stress due to low air and soil temperatures appeared to have an influence on plant water balance through their effects on flow resistances.Abbreviations gsw stomatal conductance - gmax maximum stomatal conductance - PAR photosynthetically active radiation - RH relative humidity of the air - T leaf transpiration - Ta air temperature - TL leaf temperature - Tmax maximum leaf transpiration - W air-to-leaf vapor pressure difference - shoot water potential - PD predawn shoot water potential - MIN minimum shoot water potential  相似文献   

11.
The objective of the present study was to examine the functional coordination among hydraulic traits, xylem characteristics and gas exchange rates across three deciduous Euphorbiaceae tree species (Hevea brasiliensis, Macaranga denticulata and Bischofia javanica) and three evergreen Euphorbiaceae tree species (Drypetes indica, Aleurites moluccana and Codiaeum variegatum) from a seasonally tropical forest in south-western China. The deciduous tree species were more vulnerable to water stress-induced embolism than the evergreen tree species. However, the deciduous tree species generally had higher maximal rates of sapwood and leaf-specific hydraulic conductivity (K S and K L), respectively. Compared with the evergreen tree species, the deciduous tree species, however, possessed a lower density of sapwood and a wider diameter of xylem vessels. Regardless of leaf phenology, the hydraulic vulnerability and conductivity were significantly correlated with sapwood density and mean vessel diameter. Furthermore, the hydraulic vulnerability was positively correlated with water transport efficiency. In addition, the deciduous tree species exhibited higher maximal photosynthetic rates (A max) and stomatal conductance (g max), but lower water use efficiency (WUE). Interestingly, the A max, g max and WUE were strongly correlated with K S and K L across the deciduous and evergreen tree species. These results suggest that xylem structure, rather than leaf phenology, accounts for the difference in hydraulic traits between the deciduous tree species and the evergreen tree species. Meanwhile, our results show that there is a significant trade-off between hydraulic efficiency and safety, and a strong functional correlation between the hydraulic capacity and gas exchange rates across the deciduous and evergreen tree species.  相似文献   

12.
Summary Experiments were performed on an evergreen (Heteromeles arbutifolia) and a drought deciduous shrub (Diplacus aurantiacus) to determine, 1) whether approaches for evaluating SO2 absorption by leaves in laboratory studies could be extended to field studies, 2) the effects of irrigation on metabolism and SO2 responses of the study species during a season when water was limiting, 3) to interpret SO2 responses on the basis of SO2 flux rates. Laboratory-developed approaches for evaluating SO2 absorption by leaves were found to be suitable for use with field plants, despite field plants having lower gas exchange rates. Supplementing water during times of deficit did not override all the biological and environmental factors that limited photosynthesis (A). Irrigation increased leaf longevity of D. aurantiacus, and stomatal conductance to water vapour (g); g was also shown to increase with H. arbutifolia on irrigation. Irrigation profoundly influenced plant response to SO2. Unwatered D. aurantiacus had only a small g and therefore a reduced capacity to absorb SO2 and respond to SO2; which resulted in apparent SO2 avoidance. Water availability and SO2 both affect g and therefore, SO2 flux rates into the mesophyll. Different ambient SO2 concentrations of 8.3 and 26.2 mol m-3 (0.2 and 0.6 ppm) were both found to result in similar SO2 flux rates into the leaf, due to variations in g in response to water availability. Changes in g did not always result in changes in A, implying that carbon fixation may be little affected by some SO2 exposures, although still potentially affecting such processes as maintenance of leaf water potential, transpirational cooling and nutrient uptake.Abbreviations SO2 sulphur dioxide - A net photosynthesis - E transpiration - g stomatal conductance to water vapour - W Water vapour mole fraction difference between the leaf and air - WUE water use efficiency (mol CO2 uptake per mol H2O transpired)  相似文献   

13.
Three types of observations were used to test the hypothesis that the response of stomatal conductance to a change in vapour pressure deficit is controlled by whole-leaf transpiration rate or by feedback from leaf water potential. Varying the leaf water potential of a measured leaf by controlling the transpiration rate of other leaves on the plant did not affect the response of stomatal conductance to vapour pressure deficit in Glycine max. In three species, stomatal sensitivity to vapour pressure deficit was eliminated when measurements were made at near-zero carbon dioxide concentrations, despite the much higher transpiration rates of leaves at low carbon dioxide. In Abutilon theophrasti, increasing vapour pressure deficit sometimes resulted in both decreased stomatal conductance and a lower transpiration rate even though the response of assimilation rate to the calculated substomatal carbon dioxide concentration indicated that there was no ‘patchy’ stomatal closure at high vapour pressure deficit in this case. These results are not consistent with stomatal closure at high vapour pressure deficit caused by increased whole-leaf transpiration rate or by lower leaf water potential. The lack of response of conductance to vapour pressure deficit in carbon dioxide-free air suggests that abscisic acid may mediate the response.  相似文献   

14.
  • Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood.
  • We used wild types Col‐0 and C24 and stomatal mutants sdd1‐1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed.
  • Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1‐1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis.
  • Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport.
  相似文献   

15.
It has been proposed that the stomatal response to humidity relies on sensing of the transpiration rate itself rather than relative humidity or the saturation deficit per se. We used independent measurements of stomatal conductance (gs), transpiration (E), and leaf-to-air vapour pressure difference (V) in a hybrid poplar canopy to evaluate relationships between gs and E and between gs and V. Relationships between E, V and total vapour phase conductance or crown conductance (gc) were also assessed. Conductance measurements were made on exposed and partially shaded branches over a wide range of incident solar radiation. In exposed branches, gs appeared to decline linearly with increasing E and increasing V at both high and low irradiance. However, in a partially shaded branch, a bimodal relationship between gs and E was observed in which gs continued to decrease after E had reached a maximum value and begun to decrease. The relationship between gs and V for this branch was linear. Plots of gc against E always yielded bimodal or somewhat variable relationships, whereas plots of gc against V were invariably linear. It was not possible to derive a unique relationship between conductance and E or V because prevailing radiation partially determined the operating range for conductance. Normalization of data by radiation served to linearize responses observed within the same day or type of day, but even after normalization, data collected on partly cloudy days could not be used to predict stomatal behaviour on clear days and vice versa. An additional unidentified factor was thus also involved in determining operating ranges of conductance on days with different overall radiation regimes. We suggest that the simplest mechanism to account for the observed humidity responses is stomatal sensing of the epidermal or cuticular transpiration rate rather than the bulk leaf or stomatal transpiration rate.  相似文献   

16.
Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to long‐term throughfall exclusion. Gas exchange and chlorophyll fluorescence were measured on two successive leaf cohorts in a control and a dry plot. Exclusion significantly reduced leaf water potential in the dry treatment. In both treatments, light‐saturated net assimilation rate (Amax), stomatal conductance (gs), maximum carboxylation rate (Vcmax), maximum rate of electron transport (Jmax), mesophyll conductance to CO2 (gm) and nitrogen investment in photosynthesis decreased markedly with soil water limitation during summer. The relationships between leaf photosynthetic parameters and leaf water potential remained identical in the two treatments. Leaf and canopy acclimation to progressive, long‐term drought occurred through changes in leaf area index, leaf mass per area and leaf chemical composition, but not through modifications of physiological parameters.  相似文献   

17.
We quantified the effect of stand age and tree species composition on canopy transpiration (EC) by analysing transpiration per unit leaf area (EL) and canopy stomatal conductance (GS) for boreal trees comprising a five stand wildfire chronosequence. A total of 196 sap flux sensors were used on 90 trees consisting of Betula papyrifera Marsh (paper birch; present in the youngest stand), Populus tremuloides Michx (quaking aspen), Pinus banksiana Lamb. (jack pine), and Picea mariana (Mill.) (black spruce). While fine roots were positively correlated with stand EC; leaf area index, basal area, and sapwood area were not. Stands less than 70 years old were dominated by Populus tremuloides and Pinus banksiana and stands greater than 70 years old were composed almost entirely of Picea mariana. As Populus tremuloides and Pinus banksiana increased in size and age, they displayed an increasing sapwood to leaf area ratio (AS : AL), a constant minimum leaf water potential (ΨL), and a constant proportionality between GS at low vapour pressure deficit (Dj GSref) and the sensitivity of GS to D (–δ). In contrast, AS : AL, minimum ΨL, and the proportionally between –δ and GSref decreased with height and age in Picea mariana. A GS model that included the effects of D, AS : AL, tree height, and for Picea mariana an increasing soil to leaf water potential gradient with stand age, was able to capture the effects of contrasting hydraulic properties of Picea mariana, Populus tremuloides and Pinus banksiana during stand development after wildfire.  相似文献   

18.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

19.
Summary Leaves of two field growing co-occuring perennial shrubs (drought-deciduous Diplacus aurantiacus and the evergreen Heteromeles arbutifolia) from the Californian chaparral were exposed to small doses of SO2. During this exposure the leaf environment was manipulated to determine how the presence of SO2 alters the response of gas exchange to other environmental stresses. The data show that no direct changes in stomatal conductance (g) or net assimilation rate (A) could be attributed to short-term (7 h) SO2 (4.2 mol m-3, 0.1 l l-1) exposure. D. aurantiacus leaves possessed features which demonstrate that they were sensitive to changes in environment e.g. light flux and atmospheric relative humidity. The interspecific differences in stomatal sensitivity to water vapour were extremely important, as relative humidity is a major factor influencing carbon fixation and the rate of pollutant absorption. Conditions of high relative humidity and high xylem water potentials are suggested to pre-dispose leaves of D. aurantiacus to greater pollutant doses than the more stomatally-conservative evergreen, H. arbutifolia. In the presence of SO2 there was some indication of increased g for both D. aurantiacus and H. arbutifolia as W became smaller. This SO2-effect was only obvious as increasing atmospheric humidity induced further stomatal opening. The important consequences of an SO2 enhanced g, were a reduction in WUE, which may cause earlier leaf abscission and a concomitant decline in productivity.Abbreviations A net photosynthesis - A max maximum rate light saturated photosynthesis - E transpiration; g stomatal conductance to water vapour - QY apparent incident quantum yield - W water vapour mole fraction difference between the leaf and the air - SO2 Sulphur dioxide - WUE water use efficiency (mol CO2 fixed per mol H2O-1 transpired)  相似文献   

20.
Stomatal regulation of transpiration was studied in hedgerow coffee (Coffea arabica L.) at different stages of canopy development encompassing a range of leaf area indices (L) from 0·7 to 6·7. Stomatal (gs) and crown (gc) conductance attained maximum values early during the day and then declined as both leaf-to-bulk air water vapour mole fraction difference (Va) and photosynthetically active photon flux density (I) continued to increase. Covariation of environmental variables during the day, particularly V, I, and wind speed (u), obscured stomatal responses to individual variables. This also caused diurnal hysteresis in the relationship between gc and individual variables. Normalization of gs and gc by I removed the hysteresis and revealed a strong stomatal response to humidity. At the crown scale, transpiration (E) increased linearly with net radiation (Rn) and seemed to increase with increasing wind speed. Increasing wind speed imposed higher leaf interior to leaf surface water vapour mole fraction differences (Vs) at given levels of Va. However, strong relationships between declining gc and E and increasing wind speed were obtained when gc and E were normalized by I and Rn, respectively, without invoking additional potential interactions involving temperature or CO2 concentration at the leaf surface. Apparent stomatal responses to wind were thus at least partially a reflection of the stomatal response to humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号