首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total Escherichia coli DNA from strain DK445 (which is CSH50 F?, R?, deletion lac and pro, lysogenized with lambda cIts857 Sam7 lac5: :Mu cI+) was denatured, reannealed, and observed by electron microscopy. The single-strand DNA lengths ranged from about 50 to 150 kilobases (kb). In some molecules a short duplex region with a single-stranded fork at each end was observed. The duplex lengths were 0.75 kb, 1.30 kb, 5.22 kb, 5.62 kb, which correspond to those of IS1; of IS2, IS3, or IS4; of the ribosomal RNA genes; and of the γδ sequence, respectively. Duplexes of 1.0 kb and 0.5 kb were also found. Most of the duplexes of 0.5, 0.75, 1.0 and 1.3 kb were observed as intramolecular stem-loop structures and were therefore interpreted to be sequence duplications in inverted order on the same DNA strand. The most frequent separations of the putative inverted insertion sequences were around 22 and 27.5 ± 1.5 kb. About 14% of the E. coli chromosome is estimated to be involved in the sequence arrangements that give rise to stem-loop structures upon denaturation and reannealing. The copy numbers of the putative insertion sequences and other elements that form the “stems” of the stem-loop structures are also estimated.  相似文献   

2.
Using the instability of replication loops as a method for the isolation of double-stranded nascent DNA, extruded DNA enriched for replication origins was obtained and denatured. Snap-back DNA, single-stranded DNA with inverted repeats (palindromic sequences), reassociates rapidly into stem-loop structures with zero-order kinetics when conditions are changed from denaturing to renaturing, and can be assayed by chromatography on hydroxyapatite. Origin-enriched nascent DNA strands from mouse, rat and monkey cells growing either synchronously or asynchronously were purified and assayed for the presence of snap-back sequences. The results show that origin-enriched DNA is also enriched for snap-back sequences, implying that some origins for mammalian DNA replication contain or lie near palindromic sequences.  相似文献   

3.
Abstract

We report that oligodeoxynucleotides which form stem-loop hairpin structures and which have pyrimidine-rich loops can form strong complexes with complementary single-stranded DNA sequences. Stem-loop oligonucleotides were constructed with a 25-nt T-rich loop and with variable Watson-Crick stems. The complexes of these oligomers with the sequence dAgwere studied by thermal denaturation. Evidence is presented that the complexes are one-to-one, bimolecular complexes in which the pyrimidine loop bases comprise the outer strands in a pyr · pur · pyr triplex, in effect chelating the purine strand in the center of the loop. Melting temperatures for the loop complexes are shown to be up to 29 °C higher than Watson- Crick duplex of the same length. It is shown that the presence of a stem increases stability of the triplex relative to an analogous oligomer without a stem. The effect of stem length on the stability of such a complex is examined. Such hairpin oligomers represent a new approach to the sequence-specific binding of single-stranded RNA and DNA. In addition, the finding raises the possibility that such a complex may exist in natural RNA folded sequences.  相似文献   

4.
We report that oligodeoxynucleotides which form stem-loop hairpin structures and which have pyrimidine-rich loops can form strong complexes with complementary single-stranded DNA sequences. Stem-loop oligonucleotides were constructed with a 25-nt T-rich loop and with variable Watson-Crick stems. The complexes of these oligomers with the sequence dA8 were studied by thermal denaturation. Evidence is presented that the complexes are one-to-one, bimolecular complexes in which the pyrimidine loop bases comprise the outer strands in a pyr.pur.pyr triplex, in effect chelating the purine strand in the center of the loop. Melting temperatures for the loop complexes are shown to be up to 29 degrees C higher than Watson-Crick duplex of the same length. It is shown that the presence of a stem increases stability of the triplex relative to an analogous oligomer without a stem. The effect of stem length on the stability of such a complex is examined. Such hairpin oligomers represent a new approach to the sequence-specific binding of single-stranded RNA and DNA. In addition, the finding raises the possibility that such a complex may exist in natural RNA folded sequences.  相似文献   

5.
The physical chemistry of cruciform structures in supercoiled DNA molecules   总被引:1,自引:0,他引:1  
Inverted repeat DNA sequences extrude cruciform structures when present in negatively supercoiled molecules, stabilised by the release of torsional stress brought about by the negative twist change. We have revealed the presence of cruciform structures by means of enzyme and chemical probing experiments and topological band shift methods. The geometry of cruciform structures has been studied from two points of view. The unpairing of bases in the loop region has been investigated using bisulphite modification, with the result that the central four nucleotides have single-stranded character, and the next pair have only partially single-stranded nature. Gel electrophoretic studies of a pseudo-cruciform structure indicate that the cruciform junction introduces a pronounced bend into the molecule. The dependence of the formation of the ColE1 cruciform upon DNA supercoiling shows that it has a free energy of formation of 18.4 +/- 0.5 kcal mole-1. The kinetics of the extrusion process are complex. Most sequences extrude slowly with considerable temperature coefficients, but the detailed properties are strongly sequence-dependent. One synthetic inverted repeat sequence which we have studied in detail has an Arrhenius activation energy of 42.4 +/- 3.2 kcal mole-1. We discuss possible mechanistic pathways for the extrusion process.  相似文献   

6.
Short inverted repeat sequences adopt hairpin stem-loop type structures in supercoiled closed circular DNA molecules, demonstrated by S1 nuclease cleavage. Fine mapping of cleavage frequencies is in good agreement with expected cleavage patterns based upon the interaction between an unpaired loop and a sterically bulky enzyme molecule. Whilst the topological properties of underwound DNA circles depend ultimately upon reduced linkage, necessarily a global molecular property, hairpin loop formation is an essentially local property. Thus molecular size is unimportant for the S1 hypersensitivity of the Co1E1 inverted repeat. Furthermore, a 440 bp Sau3AI, EcoRI fragment of Co1E1 which contains the inverted repeat has been cloned into pBR322 whereupon it exhibits S1 cleavage similar to Co1E1 in the supercoiled recombinant molecule. The effect is therefore both local and transmissible. Direct competition, between inverted repeats in the recombinant, coupled with close examination of flanking sequences, enables some simple 'rules' for base pairing in hairpin loops to be formulated. Whilst limited G-T and A-C base pairing appears not to be destabilising, A-G, T-C or loop outs are highly destabilising.  相似文献   

7.
8.
A major variety of "spontaneous" genomic damage is endogenous generation of apurinic sites. Depurination rates vary widely across genomes, occurring with higher frequency at "depurination hot spots." Recently, we discovered a site-specific self-catalyzed depurinating activity in short (14-18 nucleotides) DNA stem-loop-forming sequences with a 5'-G(T/A)GG-3' loop and T·A or G·C as the first base pair at the base of the loop; the 5'-G residue of the loop self-depurinates at least 10(5)-fold faster than random "spontaneous" depurination at pH 5. Formation of the catalytic intermediate for self-depurination in double-stranded DNA requires a stem-loop to extrude as part of a cruciform. In this study, evidence is presented for self-catalyzed depurination mediated by cruciform formation in plasmid DNA in vitro. Cruciform extrusion was confirmed, and its extent was quantitated by digestion of the plasmid with single strand-specific mung bean endonuclease, followed by restriction digestion and sequencing of resulting mung bean-generated fragments. Appearance of the apurinic site in the self-depurinating stem-loop was confirmed by digestion of plasmid DNA with apurinic endonuclease IV, followed by primer extension and/or PCR amplification to detect the endonuclease-generated strand break and identify its location. Self-catalyzed depurination was contingent on the plasmid being supercoiled and was not observed in linearized plasmids, consistent with the presence of the extruded cruciform in the supercoiled plasmid and not in the linear one. These results indicate that self-catalyzed depurination is not unique to single-stranded DNA; rather, it can occur in stem-loop structures extruding from double-stranded DNA and therefore could, in principle, occur in vivo.  相似文献   

9.
Cheung AK 《Journal of virology》2004,78(17):9016-9029
Palindromic sequences (inverted repeats) flanking the origin of DNA replication with the potential of forming single-stranded stem-loop cruciform structures have been reported to be essential for replication of the circular genomes of many prokaryotic and eukaryotic systems. In this study, mutant genomes of porcine circovirus with deletions in the origin-flanking palindrome and incapable of forming any cruciform structures invariably yielded progeny viruses containing longer and more stable palindromes. These results suggest that origin-flanking palindromes are essential for termination but not for initiation of DNA replication. Detection of template strand switching in the middle of an inverted repeat strand among the progeny viruses demonstrated that both the minus genome and a corresponding palindromic strand served as templates simultaneously during DNA biosynthesis and supports the recently proposed rolling-circle "melting-pot" replication model. The genome configuration presented by this model, a four-stranded tertiary structure, provides insights into the mechanisms of DNA replication, inverted repeat correction (or conversion), and illegitimate recombination of any circular DNA molecule with an origin-flanking palindrome.  相似文献   

10.
Two monoclonal antibodies (2D3 and 4B4) have been raised against a stable cruciform DNA structure containing the 27-base pair palindrome of the SV40 origin of replication on one strand and an unrelated 26-base pair palindrome on the complementary strand (pRGM 21 x pRGM 29) and have been shown to recognize conformational determinants specific to cruciform DNA structures (Frappier, L., Price, G.B., Martin, R. G., and Zannis-Hadjopoulos, M. (1987) J. Mol. Biol. 193, 751-758). To define the region(s) of the cruciform that is recognized by these antibodies, we examined the ability of 2D3 and 4B4 to protect the single-stranded tips of the loops or the four-way junctions at the base of the stem of stable cruciform molecules against cleavage by mung bean nuclease or T7 endonuclease 3, respectively. Both antibodies were found to protect two of the four elbow-like structures at the base of the cruciform from T7 endonuclease 3 cleavage, but not the tips of the cruciform arms from mung bean nuclease cleavage. Also, predigestion of the cruciform with mung bean nuclease did not affect the binding of either antibody. In addition, 2D3 bound to a cruciform and a T-shaped structure involving the palindromic sequence at the cloning site of pUC7, which is completely unrelated in sequence to the palindrome of pRGM 21 x pRGM 29, and protected the base of these stem-loop structures against cleavage by T4 endonuclease VII. These results indicate that 2D3 and 4B4 bind at or near the base of the cruciform molecules and that, at least for 2D3, binding is independent of DNA sequence.  相似文献   

11.
Loop-mediated isothermal amplification of DNA   总被引:126,自引:0,他引:126       下载免费PDF全文
We have developed a novel method, termed loop-mediated isothermal amplification (LAMP), that amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions. This method employs a DNA polymerase and a set of four specially designed primers that recognize a total of six distinct sequences on the target DNA. An inner primer containing sequences of the sense and antisense strands of the target DNA initiates LAMP. The following strand displacement DNA synthesis primed by an outer primer releases a single-stranded DNA. This serves as template for DNA synthesis primed by the second inner and outer primers that hybridize to the other end of the target, which produces a stem–loop DNA structure. In subsequent LAMP cycling one inner primer hybridizes to the loop on the product and initiates displacement DNA synthesis, yielding the original stem–loop DNA and a new stem–loop DNA with a stem twice as long. The cycling reaction continues with accumulation of 109 copies of target in less than an hour. The final products are stem–loop DNAs with several inverted repeats of the target and cauliflower-like structures with multiple loops formed by annealing between alternately inverted repeats of the target in the same strand. Because LAMP recognizes the target by six distinct sequences initially and by four distinct sequences afterwards, it is expected to amplify the target sequence with high selectivity.  相似文献   

12.
Electron microscopic study of equine herpesvirus type 1 DNA.   总被引:11,自引:11,他引:0       下载免费PDF全文
Electron microscopic studies of equine herpesvirus DNA revealed that single strands that were allowed to reanneal formed single-stranded loops with double-stranded stems only at one end of the molecule. These observations support restriction enzyme analyses which indicate that the 92-megadalton DNA molecule exists as a long region of unique sequences covalently linked to a short region. The short region is comprised of an internal unique sequence, which forms the loop during reannealing of single strands, and two terminal inverted repeat sequences that bracket the unique sequence and form the double-stranded stem structure observed upon reannealing of single strands. Measurements of the unique sequence and terminal inverted repeat subgenomic sequences indicate a size of 6.4 megadaltons for each and thus fix the size of the short region at approximately 19.2 megadaltons.  相似文献   

13.
Kissing-loop annealing of nucleic acids occurs in nature in several viruses and in prokaryotic replication, among other circumstances. Nucleobases of two nucleic acid strands (loops) interact with each other, although the two strands cannot wrap around each other completely because of the adjacent double-stranded regions (stems). In this study, we exploited DNA kissing-loop interaction for nanotechnological application. We functionalized the vertices of DNA tetrahedrons with DNA stem-loop sequences. The complementary loop sequence design allowed the hybridization of different tetrahedrons via kissing-loop interaction, which might be further exploited for nanotechnology applications like cargo transport and logical elements. Importantly, we were able to manipulate the stability of those kissing-loop complexes based on the choice and concentration of cations, the temperature and the number of complementary loops per tetrahedron either at the same or at different vertices. Moreover, variations in loop sequences allowed the characterization of necessary sequences within the loop as well as additional stability control of the kissing complexes. Therefore, the properties of the presented nanostructures make them an important tool for DNA nanotechnology.  相似文献   

14.
Genome size and the proportion of repeated nucleotide sequence DNA in plants   总被引:29,自引:0,他引:29  
The reannealing kinetics of denatured DNA fragments from 23 species of higher plants have been studied, using hydroxylapatite chromatography to distinguish reannealed from single-stranded DNA. The 2C nuclear DNA contents of the species varied between 1.7 and 98 pg. The proportions of DNA in species with a nuclear DNA mass above 5 pg that reannealed with the kinetics of sequences present in more than 100 copies were high (69–92% with a mean of 80±2.0%). For species with less than 4 pg of DNA, the mean proportion of repeated-sequence DNA was 62±2.9%. It is concluded that most of the variation in nuclear DNA mass in higher plant chromosomes can be accounted for by variation in repeated-sequence DNA. The consequences of altering the adapted DNA content of a species by the addition of families of repeated sequences are discussed in relation to the proportion of repeated-sequence DNA.  相似文献   

15.
Electrophoretic elution of DNA coupled with direct adsorption onto malachite green-polyacrylamide columns was used to isolate double- and single-stranded DNA from agarose gels. Subsequently, DNA was eluted with a high salt buffer and filtered through Sephadex which permitted recovery of the DNA in a low salt buffer at concentrations suitable for heteroduplex analysis by electron microscopy. This method was tested by examining hetero-duplexes formed from the isolated complementary single strands of T7 wild type DNA and a T7 deletion mutant. More than 80% of the reannealed molecules were intact heteroduplexes showing the deletion loop. Irradiation of single-stranded DNA with 254 nm light resulted in distorted, convoluted heteroduplexes while 366 nm light did not show this effect.  相似文献   

16.
A DNA segment (Th-sequence) has been found in several strains of Bacillus thuringiensis. This Th-sequence [3 megadaltons (Md)] induces adjacent deletions when it is located in the pAM beta 1 plasmid derived from Streptococcus faecalis. Electron microscopic examination of reannealed single strands of one plasmid (pMT9) carrying such a deletion revealed that the Th-sequence corresponds to a single-stranded loop (2.8 Md) bounded by a short double-stranded stem (less than 0.2 Md). Southern blotting experiments established that in B. thuringiensis the Th-sequence was generally located on the large plasmid which also harbours the gene coding for the delta-endotoxin (crystal protein). Hybridization and heteroduplex analysis of the extrachromosomal DNA from the berliner 1715 strain demonstrated that the crystal gene and the Th-sequence are located in close vicinity on a 42-Md plasmid and that they are separated by a 1.3-Md DNA segment. This DNA segment is repeated in inverted orientation, once immediately adjacent to the Th-sequence and once 1.8 Md beyond the crystal gene. A model for the organization of these DNA sequences inside a transposon-like structure is proposed.  相似文献   

17.
Complementary strands of CELO virus DNA.   总被引:1,自引:1,他引:0  
When alkali-denatured DNA from CELO virus (an avian adenovirus) was annealed for 15 min at 37 C in 0.1 M NaCl, 70% of the molecules formed single-stranded circles. This is probably due to base pairing of complementary sequences not more than 110 nucleotides long at the ends of the single strands and implies an inverted terminal repetition in the duplex DNA similar to that reported for the DNA from human adenoviruses. The circular molecules had a uniform length that was approximately the same as that of linear single-stranded molecules. The complementary strands of CELO virus DNA were separated on a preparative scale, and at least 40% of the heavy strands and 56% of the light strands were found to be intact as judged by the formation of single-stranded circles.  相似文献   

18.
In 1964 Holliday postulated the formation of cruciform structures (four-way junctions) in duplex DNA as intermediate in genetic recombination. Since then, many biochemical and biophysical investigations were directed at solving questions concerning structural details of stable four-way junctions. Thus far, NMR spectroscopy played a minor part in these investigations on account of the minimum size of the molecule (expressed as the number of nucleotide residues) that was thought necessary to produce a stable cruciform structure. Indeed, the smallest four-way junction studied thus far by NMR methods was built from four separate DNA strands, each containing 16 nucleotides, a total of 64. Obviously, with such a large structure one runs into assignment problems. We considered the possibility of constructing a stable four-way junction from a single strand of DNA. The underlying idea was to make use of our detailed knowledge of the building principles of stable minihairpin loops. These loops, containing only two nucleotides to bridge the gap between antiparallel strands, are maximally stable in DNA sequences like 5-d(-C-TT-G-), where C and G form a normal Watson-Crick base pair and the two T residues cross the minor groove to form the minihairpin loop. Three of such miniloops could in principle cap three arms of the cruciform. The fourth arm would have an open end. The problem to be solved is to find the minimum length that is required to insure stability of the three closed arms and of the fourth open arm. We were successful with a structure that has three short stems (four base pairs each) and an open-end stem consisting of eight base pairs, a total of 46 residues. NMR experiments, carried out on this molecule in the presence of Mg2+, showed details of folding which have never been observed before.  相似文献   

19.
Diethyl pyrocarbonate: a chemical probe for DNA cruciforms.   总被引:10,自引:5,他引:5       下载免费PDF全文
Two palindromic DNA sequences were analyzed with respect to their chemical reactivities with diethyl pyrocarbonate. In negatively supercoiled plasmid templates enhanced N7 carbethoxylation was found with individual purines located in presumptive single-stranded loops of DNA cruciform structures. No enhanced reactivity at these positions was observed in linear, relaxed or low superhelical density plasmids. Hyperreactivity was found over a narrow region only, indicating that stable cruciforms contain loops of minimal size. No enhanced chemical reactivity was found with the four-way junction at the base of cruciforms. Diethyl pyrocarbonate has proved a sensitive structural probe for the analysis, with single nucleotide resolution, of DNA cruciform structures.  相似文献   

20.
The terminal structure of the linear mitochondrial DNA (mtDNA) from three yeast species has been examined. By enzymatic digestion, alkali denaturation, and sequencing of cloned termini, it was shown that in Pichia pijperi and P. jadinii, both termini of the linear mtDNA were made of a single-stranded loop covalently joining the two strands, as in the case of vaccinia virus DNA. The left and right loop sequences were in either of two orientations, suggesting the existence of a flip-flop inversion mechanism. Contiguous to the terminal loops, inverted terminal repeats were present. The mtDNA from Williopsis mrakii seems to have an analogous structure, although terminal loops could not be directly demonstrated. Electron microscopy revealed the presence, among linear molecules, of a small number of circular DNAs, mostly of monomer length. Linear and circular models of replication are considered, and possible conversion mechanisms between linear and circular forms are discussed. A flip-flop inversion mechanism between the inverted repeat sequences within a circular intermediate may be involved in the generation of the linear form of mtDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号