首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant morphological and physiological traits exhibit plasticity in response to light intensity. Leaf thickness is enhanced under high light (HL) conditions compared with low light (LL) conditions through increases in both cell number and size in the dorsoventral direction; however, the regulation of such phenotypic plasticity in leaf thickness (namely, sun‐ or shade‐leaf formation) during the developmental process remains largely unclear. By modifying observation techniques for tiny leaf primordia in Arabidopsis thaliana, we analysed sun‐ and shade‐leaf development in a time‐course manner and found that the process of leaf thickening can be divided into early and late phases. In the early phase, anisotropic cell elongation and periclinal cell division on the adaxial side of mesophyll tissue occurred under the HL conditions used, which resulted in the dorsoventral growth of sun leaves. Anisotropic cell elongation in the palisade tissue is triggered by blue‐light irradiation. We discovered that anisotropic cell elongation processes before or after periclinal cell division were differentially regulated independent of or dependent upon signalling through blue‐light receptors. In contrast, during the late phase, isotropic cell expansion associated with the endocycle, which determined the final leaf thickness, occurred irrespective of the light conditions. Sucrose production was high under HL conditions, and we found that sucrose promoted isotropic cell expansion and the endocycle even under LL conditions. Our analyses based on this method of time‐course observation addressed the developmental framework of sun‐ and shade‐leaf formation.  相似文献   

2.
Acclimation of foliar features to cool temperature and high light was characterized in winter (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col‐0 and ecotypes from Sweden and Italy) versus summer (Helianthus annuus L. cv. Soraya; Cucurbita pepo L. cv. Italian Zucchini Romanesco) annuals. Significant relationships existed among leaf dry mass per area, photosynthesis, leaf thickness and palisade mesophyll thickness. While the acclimatory response of the summer annuals to cool temperature and/or high light levels was limited, the winter annuals increased the number of palisade cell layers, ranging from two layers under moderate light and warm temperature to between four and five layers under cool temperature and high light. A significant relationship was also found between palisade tissue thickness and either cross‐sectional area or number of phloem cells (each normalized by vein density) in minor veins among all four species and growth regimes. The two winter annuals, but not the summer annuals, thus exhibited acclimatory adjustments of minor vein phloem to cool temperature and/or high light, with more numerous and larger phloem cells and a higher maximal photosynthesis rate. The upregulation of photosynthesis in winter annuals in response to low growth temperature may thus depend on not only (1) a greater volume of photosynthesizing palisade tissue but also (2) leaf veins containing additional phloem cells and presumably capable of exporting a greater volume of sugars from the leaves to the rest of the plant.  相似文献   

3.
Mitochondria are frequently observed in the vicinity of chloroplasts in photosynthesizing cells, and this association is considered necessary for their metabolic interactions. We previously reported that, in leaf palisade cells of Arabidopsis thaliana, mitochondria exhibit blue‐light‐dependent redistribution together with chloroplasts, which conduct accumulation and avoidance responses under the control of blue‐light receptor phototropins. In this study, precise motility analyses by fluorescent microscopy revealed that the individual mitochondria in palisade cells, labeled with green fluorescent protein, exhibit typical stop‐and‐go movement. When exposed to blue light, the velocity of moving mitochondria increased in 30 min, whereas after 4 h, the frequency of stoppage of mitochondrial movement markedly increased. Using different mutant plants, we concluded that the presence of both phototropin1 and phototropin2 is necessary for the early acceleration of mitochondrial movement. On the contrary, the late enhancement of stoppage of mitochondrial movement occurs only in the presence of phototropin2 and only when intact photosynthesis takes place. A plasma‐membrane ghost assay suggested that the stopped mitochondria are firmly adhered to chloroplasts. These results indicate that the physical interaction between mitochondria and chloroplasts is cooperatively mediated by phototropin2‐ and photosynthesis‐dependent signals. The present study might add novel regulatory mechanism for light‐dependent plant organelle interactions.  相似文献   

4.
Weston E  Thorogood K  Vinti G  López-Juez E 《Planta》2000,211(6):807-815
Plants acclimate to changes in light quantity by altering leaf-cell development and the accumulation of chloroplast components, such that light absorption is favoured under limiting illumination, and light utilisation under non-limiting conditions. Previous evidence suggests an involvement of a high-light photosynthetic redox signal in the down-regulation of the accumulation of the light-harvesting complexes of photosystem II (Lhcb) and the expression of the Lhcb genes, and of a blue-light signal in the control of leaf development and in the increase in photosynthetic capacity, as affected by the accumulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). We examined the internal anatomy of leaves, the ultrastructure of chloroplasts and accumulation of light-harvesting complexes and Rubisco in wild-type Arabidopsis thaliana (L.) Heynh. and in mutants in each of the three known blue-light photoreceptors, cryptochrome 1, cryptochrome 2 and phototropin, as well as a mutant in both cryptochromes. Our results indicate an extensive capacity of the Arabidopsis mesophyll cells to adapt to high light fluence rate with an increase in palisade elongation. Under high light, chloroplasts showed increased starch accumulation and reductions in the amount of granal thylakoids per chloroplast, in the proportion of chlorophyll b relative to chlorophyll a, and in the accumulation of the major Lhcb polypeptides. The responses were similar for all four mutants, with respect to their wild types. The results are consistent with either a complete redundancy in function between cryptochromes and phototropin, or their absence of involvement in the light-quantity responses tested. We observed minimal effects of light quantity on Rubisco accumulation over the range of fluence rates used, and conclude that elongation of palisade mesophyll cells and accumulation of Rubisco are controlled separately. This indicates that light acclimation must be the result of a number of individual elementary responses. Quantitative differences in the acclimatory responses were observed between the Landsberg erecta and Columbia wild-type ecotypes used. Received: 4 April 2000 / Accepted: 14 July 2000  相似文献   

5.
Developmental process of sun and shade leaves in Chenopodium album L.   总被引:1,自引:0,他引:1  
The authors’ previous study of Chenopodium album L. revealed that the light signal for anatomical differentiation of sun and shade leaves is sensed by mature leaves, not by developing leaves. They suggested that the two‐cell‐layered palisade tissue of the sun leaves would be formed without a change in the total palisade tissue cell number. To verify that suggestion, a detailed study was made of the developmental processes of the sun and shade leaves of C. album with respect to the division of palisade tissue cells (PCs) and the data was expressed against developmental time (leaf plastochron index, LPI). The total number of PCs per leaf did not differ between the sun and shade leaves throughout leaf development (from LPI ?1 to 10). In both sun and shade leaves, anticlinal cell division of PCs occurred most frequently from LPI ?1 to 2. In sun leaves, periclinal division of PCs occurred synchronously with anticlinal division. The constancy of the total number of PCs indicates that periclinal divisions occur at the expense of anticlinal divisions. These results support the above suggestion that two‐cell‐layered palisade tissue is formed by a change of cell division direction without a change in the total number of PCs. PCs would be able to recognize the polarity or axis that is perpendicular to the leaf plane and thereby change the direction of their cell divisions in response to the light signal from mature leaves.  相似文献   

6.
The rapid induction of photosynthesis is critical for plants under light‐fleck environment. Most previous studies about photosynthetic induction focused upon single leaf, but they did not consider the systemic integrity of plant. Here, we verified whether systemic signalling is involved in photosynthetic induction. Rumex K‐1 (Rumex patientia × Rumex tianschaious) plants were grown under light‐fleck condition. After whole night dark adaptation, different numbers of leaves (system leaf or SL) were pre‐illuminated with light, and then the photosynthetic induction of other leaves (target leaf or TL) was investigated. This study showed that the pre‐illumination of SL promoted photosynthetic induction in TL. This promotion was independent of the number of SL, the light intensity on SL and the distance between SL and TL, indicating that this systemic signalling is non‐dose‐dependent. More interestingly, the photosynthetic induction was promoted by only the pre‐illumination of morphological upper leaf rather than the pre‐illumination of morphological lower leaf, indicating that the transfer of this signal is directional. The results showed that the transfer of this systemic signalling depends upon the phloem. This systemic signalling helps plants to use light energy more efficiently under light flecks.  相似文献   

7.
We investigated the relationship between the blue light receptor phototropin 1 (phot1) and lateral root growth in Arabidopsis thaliana seedlings. Fluorescence and confocal microscopy images, as well as PHOT1 mRNA expression studies provide evidence that it is highly expressed in the elongation zone of lateral roots where auxin is accumulating. However, treatment with the auxin transport inhibitor N‐1‐naphthylphthalamic acid significantly reduced PHOT1 expression in this zone. In addition, PHOT1 expression was higher in darkness than in light. The total number of lateral roots was higher in the phot1 mutant than in wild‐type Arabidopsis. Cells in the elongation zone of lateral roots of the phot1 mutant were longer than those of wild‐type lateral roots. These findings suggest that PHOT1 plays a role(s) in elongation of lateral roots through the control of an auxin‐related signalling pathway.  相似文献   

8.
Structural changes accompanying the acclimation process were observed in leaves of sweetgum, Liquidambar styraciflua, using light and transmission electron microscopy (TEM). Comparisons were made of leaves obtained from tissue culture, plantlets acclimated after transfer from the in vitro environment to soil, and field grown trees. Leaves of cultured plantlets lacked a differentiated palisade parenchyma and had spongy parenchyma interspersed with large air spaces. Field grown leaves showed distinct palisade and spongy tissues and a high cell density. New leaves from acclimated plantlets showed an elongation of the upper mesophyll with fewer intercellular spaces than cultured plants. Cells from leaves from in vitro plantlets had large vacuoles, limited cytoplasmic content and flattened chloroplast with an irregularly arranged internal membrane system. Acclimated and field leaf cells had a greater cytoplasmic content than cultured leaves, with the former having more dominate vacuoles. Chloroplasts had evident grana. Acclimated and field leaves had a well developed cuticle unlike leaves from culture.  相似文献   

9.
Light gradients were measured in leaves that had different types of anatomical development of the mesophyll but similar pigment content. Leaves of the legume, Thermopsis montana, had columnar palisade and spongy mesophyll whereas leaves of the monocot, Smilacina stellata, had spongy mesophyll only. Light gradients were measured at 550 nm in both types of leaves when they were irradiated with collimated or diffuse light. When irradiated with collimated light, light gradients were steeper in leaves with spongy mesophyll in comparison to those that had palisade tissue. On the other hand, light gradients were similar between both leaf types when they were irradiated with diffuse light. Thus, columnar palisade cells facilitated the penetration of collimated light over diffuse light. These results suggest that palisade tissue may help distribute light more uniformly to chloroplasts within the leaf. Moreover, the functional significance of palisade tissue may be related to the amount of collimated light within the natural environment.  相似文献   

10.
11.
The involvement of nitrogenous substances in the transition to flowering was investigated in Sinapis alba and Arabidopsis thaliana (Columbia). Both species grown in short days (SD) are induced to flower by one long day (LD). In S. alba, the phloem sap (leaf and apical exudates) and the xylem sap (root exudate) were analysed in LD versus SD. In A. thaliana, only the leaf exudate could be analysed but an alternative system for inducing flowering without day‐length extension was used: the displaced SD (DSD). Significant results are: (i) in both species, the leaf exudate was enriched in Gln during the inductive LD, at a time compatible with export of the floral stimulus; (ii) in S. alba, the root export of amino acids decreased in LD, whereas the nitrate remained unchanged – thus the extra‐Gln found in the leaf exudate should originate from the leaves; (iii) extra‐Gln was also found very early in the apical exudate of S. alba in LD, together with more Glu; (iv) in A. thaliana induced by one DSD, the leaf export of Asn increased sharply, instead of Gln in LD. This agrees with Asn prevalence in C‐limited plants. The putative role of amino acids in the transition to flowering is discussed.  相似文献   

12.
In vascular plants the shoot apical meristem consists of three tissue layers, L1, L2 and the L3, that are kept separate during organ formation and give rise to the epidermis (L1) and the subepidermal tissues (L2, L3). For proper organ development these different tissue layers must interact with each other, though their relative contributions are a matter of debate. Here we use ANGUSTIFOLIA (AN), which controls cell polarity and leaf shape, to study its morphogenetic function in the epidermis and the subepidermis of Arabidopsis thaliana. We show that ANGUSTIFOLIA expression in the subepidermis cannot rescue epidermal cell polarity defects, indicating a cell‐autonomous molecular function. We demonstrate that leaf width is only rescued by subepidermal AN expression, whereas leaf length is also rescued by epidermal expression. Strikingly, subepidermal rescue of leaf width is accompanied by increased cell number in the epidermis, indicating that AN can trigger cell divisions in a non‐autonomous manner.  相似文献   

13.
  • When plants are exposed to a heterogeneous environment, photosynthesis of leaves is not only determined by their local condition, but also by certain signals from other parts of the same plant, termed systemic regulation. Our present study was conducted to investigate the effects of light‐dependent systemic regulation on the photosynthetic performance of soybean (Glycine max L. Merr.) under heterogeneous light conditions.
  • Soybean plants were treated with heterogeneous light. Then gas exchange characteristics were measured to evaluate the photosynthetic performance of leaves. Parameters related to photosynthetic pigments, chlorophyll fluorescence, Rubisco and photosynthates were examined to study the mechanisms of light‐dependent systemic regulation on photosynthesis.
  • Light‐induced systemic signalling by illuminated leaves reduced the Pn of both upper and lower non‐illuminated leaves on the same soybean plant. The decrease in gs and increase in Ci in these non‐illuminated leaves indicated restriction of carbon assimilation, which was further verified by the decline in content and activity of Rubisco. However, the activation state of Rubisco decreased only in upper non‐illuminated leaves. Quantum efficiency of PSII (ΦPSII) and ETR also decreased only in upper non‐illuminated leaves. Moreover, the effects of light‐induced systemic signalling on carbohydrate content were also detectable only in upper non‐illuminated leaves.
  • Light‐induced systemic signalling by illuminated leaves restricts carbon assimilation and down‐regulates photosynthetic performance of non‐illuminated leaves within a soybean plant. However, effects of such systemic regulation differed when regulated in upward or downward direction.
  相似文献   

14.
López-Juez E  Bowyer JR  Sakai T 《Planta》2007,227(1):113-123
Leaf palisade cell development and the composition of chloroplasts respond to the fluence rate of light to maximise photosynthetic light capture while minimising photodamage. The underlying light sensory mechanisms are probably multiple and remain only partially understood. Phototropins (PHOT1 and PHOT2) are blue light receptors regulating responses which are light quantity-dependent and which include the control of leaf expansion. Here we show that genes for proteins in the reaction centres show long-term responses in wild type plants, and single blue photoreceptor mutants, to light fluence rate consistent with regulation by photosynthetic redox signals. Using contrasting intensities of white or broad-band red or blue light, we observe that increased fluence rate results in thicker leaves and greater number of palisade cells, but the anticlinal elongation of those cells is specifically responsive to the fluence rate of blue light. This palisade cell elongation response is still quantitatively normal in fully light-exposed regions of phot1 phot2 double mutants under increased fluence rate of white light. Plants grown at high light display elevated expression of RBCS (for the Rubisco small subunit) which, together with expected down-regulation of LHCB1 (for the photosynthetic antenna primarily of photosystem II), is also observed in phot double mutants. We conclude that an unknown blue light photoreceptor, or combination thereof, controls the development of a typical palisade cell morphology, but phototropins are not essential for either this response or acclimation-related gene expression changes. Together with previous evidence, our data further demonstrate that photosynthetic (chloroplast-derived) signals play a central role in the majority of acclimation responses.  相似文献   

15.
Light is an important environmental information source that plants use to modify their growth and development. Palisade parenchyma cells in leaves develop cylindrical shapes in response to blue light; however, the photosensory mechanism for this response has not been elucidated. In this study, we analyzed the palisade cell response in phototropin-deficient mutants. First, we found that two different light-sensing mechanisms contributed to the response in different proportions depending on the light intensity. One response observed under lower intensities of blue light was mediated exclusively by a blue light photoreceptor, phototropin 2 (PHOT2). Another response was elicited under higher intensities of light in a phototropin-independent manner. To determine the tissue in which PHOT2 perceives the light stimulus to regulate the response, green fluorescent protein (GFP)-tagged PHOT2 (P2G) was expressed under the control of tissue-specific promoters in the phot1 phot2 mutant background. The results revealed that the expression of P2G in the mesophyll, but not in the epidermis, promoted palisade cell development. Furthermore, a constitutively active C-terminal kinase fragment of PHOT2 fused to GFP (P2CG) promoted the development of cylindrical palisade cells in the proper direction without the directional cue provided by light. Hence, in response to blue light, PHOT2 promotes the development of cylindrical palisade cells along a predetermined axis in a tissue-autonomous manner.  相似文献   

16.
枫香(Liquidambar formosana)因其叶片入秋后逐渐变红而极具观赏价值,是优良的景观生态树种。为了解枫香叶片结构变化与叶色的关系,该文通过连续监测枫香叶片变红过程中组织结构、光合特性及色素含量的变化,分析叶片结构与其光合特性和色素的关系。结果表明:(1)叶片变色过程中,表皮细胞均为椭圆形,紧密排列,未观察到明显的细胞变异,表面未附着绒毛和蜡质,且上表皮细胞与栅栏组织细胞间排列紧密,未出现较大的气室。(2)随着叶片逐渐变红,叶片结构变化显著,其中叶片、上表皮、栅栏组织和海绵组织厚度及气孔开度均逐渐减小,而气孔器长和宽、单个气孔器面积则逐渐增大。(3)随着叶片结构的变化,其叶绿素含量逐渐减少,致使净光合速率逐渐减小,在出现光破坏时,叶片通过在栅栏组织细胞液泡内合成花色苷来自我保护,而大量的花色苷致使叶片表面呈现红色。综上认为,叶绿素含量降低,花色素苷大量积累是导致枫香叶片变红的直接原因,而枫香叶色变红则是其一系列生理结构特征综合作用的结果。  相似文献   

17.
18.
Leaf hydraulics of Aesculus hippocastanum L. were measured over the growing season and during extensive leaf mining by the larvae of an invasive moth (Cameraria ohridella Deschka et Dimic) that specifically destroy the palisade tissue. Leaves showed seasonal changes in hydraulic resistance (Rlamina) which were related to ontogeny. After leaf expansion was complete, the hydraulic resistance of leaves and the partitioning of resistances between vascular and extra‐vascular compartments remained unchanged despite extensive disruption of the palisade by leafminers (up to 50%). This finding suggests that water flow from the petiole to the evaporation sites might not directly involve the palisade cells. The analysis of the temperature dependence of Rlamina in terms of Q10 revealed that at least one transmembrane step was involved in water transport outside the leaf vasculature. Anatomical analysis suggested that this symplastic step may be located at the bundle sheath where the apoplast is interrupted by hydrophobic thickening of cell walls. Our findings offer some support to the view of a compartmentalization of leaves into well‐organized water pools so that the transpiration stream would involve veins, bundle sheath and spongy parenchyma, while the palisade tissue would be largely by‐passed with the possible advantage of protecting cells from short‐term fluctuations in water status.  相似文献   

19.
One conserved feature among angiosperms is the development of flat thin leaves. This developmental pattern optimizes light capture and gas exchange. The blue light (BL) receptors phototropins are required for leaf flattening, with the null phot1phot2 mutant showing curled leaves in Arabidopsis (Arabidopsis thaliana). However, key aspects of their function in leaf development remain unknown. Here, we performed a detailed spatiotemporal characterization of phototropin function in Arabidopsis leaves. We found that phototropins perceive light direction in the blade, and, similar to their role in hypocotyls, they control the spatial pattern of auxin signaling, possibly modulating auxin transport, to ultimately regulate cell expansion. Phototropin signaling components in the leaf partially differ from hypocotyls. Moreover, the light response on the upper and lower sides of the leaf blade suggests a partially distinct requirement of phototropin signaling components on each side. In particular, NON PHOTOTROPIC HYPOCOTYL 3 showed an adaxial-specific function. In addition, we show a prominent role of PHYTOCHROME KINASE SUBSTRATE 3 in leaf flattening. Among auxin transporters, PIN-FORMED 3,4,7 and AUXIN RESISTANT 1 (AUX1)/LIKE AUXIN RESISTANT 1 (LAX1) are required for the response while ABCB19 has a regulatory role. Overall, our results show that directional BL perception by phototropins is a key aspect of leaf development, integrating endogenous and exogenous signals.

Phototropins perceive light direction in the leaf and control the auxin signaling pattern to regulate blade flattening.  相似文献   

20.
Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue‐light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf‐area basis. The same strategy might be used in other plant leaves grown under direct sunlight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号