首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1‐year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.  相似文献   

2.
Germplasm line J87-233 is resistant to soybean cyst nematode (SCN) races 1, 2, 3, 5 and moderately resistant to race 14 with resistance derived from 3 primitive sources, Peking, PI 88788 and PI 90763. F2:3 progeny of J87-233 and SCN-susceptible Hutcheson cross were evaluated for response to SCN races 1, 2, 3, 5 and 14. Linkage groups (LG) A, B, F, G, J, M, N, S were tested with 215 genomic clones and 45 decamers for parental genotypes. QTL for race 1 and QTL for race 3 were detected on LG A2, the region of BLT65V and SCAR 548/5631100/1025,975. The cluster analysis of 12 soybean cultivars and 38 plant introductions confirmed association of SCAR1100/1025,975 with resistance to races 1 and 3, and suggested possible DNA rearrangements that might give rise to new resistance specificities in the region. The highly significant association of K69T marker with SCN race 1 resistance in conjunction with its location, 18.5 cM from the reported QTL, exemplifies the importance of the QTL locus on LG G and suggests expansion of the linkage map in the LG G-terminal region. Detected interaction between loci on LG A2 and LG G, and also with loci on LG F and LG M, may play a significant role in the genotype-specific response to SCN. Identification of two major regions on LG A2 and LG G for SCN resistance shows their applicability to advanced germplasm, however, transmission of molecular marker alleles indicates that applied markers are not yet reliable in revealing all possible recombination events in breeding for SCN resistance.  相似文献   

3.
Resistance of soybean [Glycine max (L.) Merr.] to cyst nematode (SCN) (Heterodera glycines Ichinohe), one of the most destructive pathogens affecting soybean, involves a complex genetic system. The identification of QTLs associated with SCN resistance may contribute to the understanding of such system. The objective of this work was to identify and map QTLs for resistance to SCN Race 14 with the aid of molecular markers. BC3F2:3 and F2:3 populations, both derived from an original cross between resistant cv. Hartwig and the susceptible line BR-92–31983 were screened for resistance to SCN Race 14. Four microsatellite (Satt082, Sat_001, Satt574 and Satt301) and four RAPD markers (OPAA-11795, OPAE-08837, OPR-07548 and OPY-072030) were identified in the BC3F2:3 population using the bulked segregant analysis (BSA) technique. These markers were amplified in 183 F2:3 families and mapped to a locus that accounts for more than 40% of the resistance to SCN Race 14. Selection efficiency based on these markers was similar to that obtained with the conventional method. In the case of the microsalellite markers, which identify homozygous resistant genotypes, the efficiency was even higher. This new QTL has been mapped to the soybean linkage group D2 and, in conjunction with other QTLs already identified for SCN resistance, will certainly contribute to our understanding of the genetic basis of resistance of this important disease in soybean. Received: 12 October 1999 / Accepted: 14 April 2000  相似文献   

4.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean that is spreading across major soybean production regions worldwide. Increased SCN virulence has recently been observed in both the United States and China. However, no study has reported a genome assembly for H. glycines at the chromosome scale. Herein, the first chromosome‐level reference genome of X12, an unusual SCN race with high infection ability, is presented. Using whole‐genome shotgun (WGS) sequencing, Pacific Biosciences (PacBio) sequencing, Illumina paired‐end sequencing, 10X Genomics linked reads and high‐throughput chromatin conformation capture (Hi‐C) genome scaffolding techniques, a 141.01‐megabase (Mb) assembled genome was obtained with scaffold and contig N50 sizes of 16.27 Mb and 330.54 kilobases (kb), respectively. The assembly showed high integrity and quality, with over 90% of Illumina reads mapped to the genome. The assembly quality was evaluated using Core Eukaryotic Genes Mapping Approach and Benchmarking Universal Single‐Copy Orthologs. A total of 11,882 genes were predicted using de novo, homolog and RNAseq data generated from eggs, second‐stage juveniles (J2), third‐stage juveniles (J3) and fourth‐stage juveniles (J4) of X12, and 79.0% of homologous sequences were annotated in the genome. These high‐quality X12 genome data will provide valuable resources for research in a broad range of areas, including fundamental nematode biology, SCN–plant interactions and co‐evolution, and also contribute to the development of technology for overall SCN management.  相似文献   

5.
Soybean cyst nematode (SCN) is a major soybean yield-limiting pest. The present study was conducted to map broad-based SCN resistance loci from the cultivar Hartwig. Two-hundred F23 lines derived from the cross Williams 82 x Hartwig were screened with a fourth-generation SCN inbred and 56 polymorphic molecular markers. Allele states and phenotypes were analyzed using stepwise regression and the model selection was made at P 0.01. Four unlinked RFLP markers (A006, A567, A487, A112) were associated with SCN resistance and the partial coefficient of determinations (R2) were 91%, 1%, 1%, and 1%. We have mapped a new, major SCN resistance locus (A006) and three minor loci (A567, A487, A112). This complete mapping will accelerate the transfer of broad-based resistance without linkage drag and aid in the determination of relationships among various SCN-resistant germplasm sources.  相似文献   

6.
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence‐related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full‐length cDNAs of GmSAMT1 from a SCN‐resistant soybean line and from a SCN‐susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli‐expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μm . To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN‐susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.  相似文献   

7.
Two-dimensional polyacrylamide gel electrophoretic protein patterns of H. glycines from southern Indiana (Posey County) and northern Indiana (Pulaski County) were largely similar, but many differences existed. The pattern of the Posey isolate was similar to patterns from isolates collected in other areas of the United States. Unique dense protein spots in the pattern of an isolate from Hokkaido, Japan, distinguished it from patterns of six U.S. isolates.  相似文献   

8.
Protein kinases phosphorylate proteins for functional changes and are involved in nearly all cellular processes, thereby regulating almost all aspects of plant growth and development, and responses to biotic and abiotic stresses. We generated two independent co-expression networks of soybean genes using control and stress response gene expression data and identified 392 differentially highly interconnected kinase hub genes among the two networks. Of these 392 kinases, 90 genes were identified as “syncytium highly connected hubs”, potentially essential for activating kinase signalling pathways in the nematode feeding site. Overexpression of wild-type coding sequences of five syncytium highly connected kinase hub genes using transgenic soybean hairy roots enhanced plant susceptibility to soybean cyst nematode (SCN; Heterodera glycines) Hg Type 0 (race 3). In contrast, overexpression of kinase-dead variants of these five syncytium kinase hub genes significantly enhanced soybean resistance to SCN. Additionally, three of the five tested kinase hub genes enhanced soybean resistance to SCN Hg Type 1.2.5.7 (race 2), highlighting the potential of the kinase-dead approach to generate effective and durable resistance against a wide range of SCN Hg types. Subcellular localization analysis revealed that kinase-dead mutations do not alter protein cellular localization, confirming the structure–function of the kinase-inactive variants in producing loss-of-function phenotypes causing significant decrease in nematode susceptibility. Because many protein kinases are highly conserved and are involved in plant responses to various biotic and abiotic stresses, our approach of identifying kinase hub genes and their inactivation using kinase-dead mutation could be translated for biotic and abiotic stress tolerance.  相似文献   

9.
A tetraploid single-cyst isolate of Heterodera glycines from a field population from Indiana has been propagated in the greenhouse on Lee soybeans since its discovery, in 1973. The tetraploid isolate has n = 18 chromosomes, compared with n = 9 of the diploid H. glycines; it has larger cysts and larvae, but shows the same level of parasitism and host range as the diploid population from which it apparently evolved. Association of chromosomes is irregular at metaphase I, with quadrivalents, trivalents, and univalents often observed in addition to the bivalents. The second maturation division is usually normal. About 80% of the mature oocytes (just before fertilization) have n = 18, and the other 20% have n = 17 or 19. Reproduction of the tetraploid isolate is exclusively by cross-fertilization. The discovery of such a tetraploid provides an experimental tool for the study of polyploidy in nematodes. Many amphimictic plant-parasitic nematodes are suspected of representing polyploids.  相似文献   

10.
2-DE reference maps of Heterodera glycines were constructed. After in-gel digestion with trypsin, 803 spots representing 426 proteins were subsequently identified by LC-MS/MS. Proteins with annotated function were further categorized by Gene Ontology. The results showed that proteins involved in metabolic, developmental and biological regulation processes were the most abundant.  相似文献   

11.
Computational methods offer great hope but limited accuracy in the prediction of functional cis‐regulatory elements; improvements are needed to enable synthetic promoter design. We applied an ensemble strategy for de novo soybean cyst nematode (SCN)‐inducible motif discovery among promoters of 18 co‐expressed soybean genes that were selected from six reported microarray studies involving a compatible soybean–SCN interaction. A total of 116 overlapping motif regions (OMRs) were discovered bioinformatically that were identified by at least four out of seven bioinformatic tools. Using synthetic promoters, the inducibility of each OMR or motif itself was evaluated by co‐localization of gain of function of an orange fluorescent protein reporter and the presence of SCN in transgenic soybean hairy roots. Among 16 OMRs detected from two experimentally confirmed SCN‐inducible promoters, 11 OMRs (i.e. 68.75%) were experimentally confirmed to be SCN‐inducible, leading to the discovery of 23 core motifs of 5‐ to 7‐bp length, of which 14 are novel in plants. We found that a combination of the three best tools (i.e. SCOPE, W‐AlignACE and Weeder) could detect all 23 core motifs. Thus, this strategy is a high‐throughput approach for de novo motif discovery in soybean and offers great potential for novel motif discovery and synthetic promoter engineering for any plant and trait in crop biotechnology.  相似文献   

12.
13.
14.
Experiments were conducted in a greenhouse to evaluate soils for their degree of suppressiveness against the soybean cyst nematode, Heterodera glycines. The soils were collected in 2003 and 2004 from two fields with long-term soybean monoculture and one field with corn/soybean annual rotation. The soils were autoclaved, treated with formalin, or untreated. Both formalin and autoclave treatments removed suppressive factors and increased the nematode egg population density as compared with untreated soil. The mixture of 10% untreated soil with 90% treated soil resulted in similar nematode population densities as in the untreated soils collected from the two monoculture fields, indicating the suppressive factors were biological and can be transferred. The soils from the monoculture fields appeared to be more suppressive than the soil from the corn/soybean rotation. Hirsutella rhossiliensis was observed in all three soils, and parasitised a large percentage of second-stage juveniles of H. glycines in the monoculture soils in 2004. The fungus may be a major factor for the suppression of the nematode population, but in this study other biological factors cannot be ruled out.  相似文献   

15.
Protein patterns obtained by two-dimensional polyacrylamide gel electrophoresis for three isolates of Heterodera glycines from southern Indiana appear qualitatively similar and have higher pairwise Jaccard similarity coefficients with each other than with isolates from northern Indiana. Three isolates from three northern counties share proteins not present in the southern isolates, but as a group the northern isolates are less similar to each other than are the southern Indiana isolates.  相似文献   

16.
Fifty-four susceptible soybean, Glycine max, cultivars or plant introductions were evaluated for tolerance to H. glycines, the soybean cyst nematode (SCN). Seed yields of genotypes were compared in nematicide-treated (1,2-dibromo-3-chloropropane, 58 kg a.i./ha) and nontreated plots at two SCN-infested locations over 3 years. Distinct and consistent levels of tolerance to SCN were observed among soybean genotypes. PI 97100, an introduction from Korea, exhibited the highest level of tolerance with an average tolerance index ([yield in nontreated plot ÷ yield in nematicide-treated plot] × 100) of 96 over 2 years. Coker 156 and Wright had moderate levels of tolerance (range in index values 68 to 95) compared to the intolerant cuhivars Bragg and Coker 237 (range in index values 33 to 68). Most of the soybean genotypes evaluated were intolerant to SCN. The rankings of five genotypes for tolerance to SCN and Hoplolaimus columbus were similar. Tolerance for seed yield was more consistently correlated with tolerance for plant height (r = 0.55 to 0.64) than for seed weight (r = 0.23 to 0.65) among genotypes.  相似文献   

17.
Selection for ability of soybean cyst nematode (SCN), Heterodera glycines, to reproduce on soybeans with different sources of resistance divides some SCN race 4 field populations into two distinct subpopulations. These subpopulations reproduce well on ''Bedford'' and plant introduction (PI) 88788 or PI 89772 and PI 90763 but not on both pairs of soybean lines. The ability of these subpopulations to reproduce on the four soybean lines was reversed by changing the soybean line used as a host during a second cycle of selection. When SCN populations previously selected for reproduction on Bedford and PI 88788 were selected for their ability to reproduce on D72-8927 and J74-88, the ability of these populations to reproduce on Bedford and PI 88788 decreased significantly and their ability to reproduce on PI 89772 and PI 90763 increased significantly. Conversely, when SCN populations, previously selected for reproduction on P189772 and P190763, were selected for their ability to reproduce on Bedford, the reproduction of these populations on Bedford increased significantly and reproduction on PI 89772 and PI 90763 decreased significantly. Selection for ability of a SCN race 4 field population to reproduce on soybean lines derived from SCN race 4 resistant PIs resulted in the same division of the field population into two distinct subpopulations. These data substantiate earlier proposals to rotate cultivars with different genes for SCN resistance as a means of managing SCN populations.  相似文献   

18.
Cho HJ  Farrand SK  Noel GR  Widholm JM 《Planta》2000,210(2):195-204
Cotyledon explants of 10 soybean [Glycine max (L.) Merr.] cultivars were inoculated with Agrobacterium rhizogenes strain K599 with and without binary vectors pBI121 or pBINm-gfp5-ER possessing both neomycin phosphotransferase II (nptII) and β-glucuronidase (gus) or nptII and green fluorescent protein (gfp) genes, respectively. Hairy roots were produced from the wounded surface of 54–95% of the cotyledon explants on MXB selective medium containing 200 μg ml−1 kanamycin and 500 μg ml−1 carbenicillin. Putative individual transformed hairy roots were identified by cucumopine analysis and were screened for transgene incorporation using polymerase chain reaction. All of the roots tested were found to be co-transformed with T-DNA from the Ri-plasmid and the transgene from the binary vectors. Southern blot analysis confirmed the presence of the 35S-gfp5 gene in the plant genomes. Transgene expression was also confirmed by histochemical GUS assay and Western blot analysis for the GFP. Attempts to induce shoot formation from the hairy roots failed. Infection of hairy roots of the soybean cyst nematode (Heterodera glycines Ichinohe)-susceptible cultivar, Williams 82, with eggs of H. glycines race 1, resulted in the development of mature cysts about 4–5 weeks after inoculation. Thus the soybean cyst nematode could complete its entire life cycle in transformed soybean hairy-root cultures expressing GFP. This system should be ideal for testing genes that might impart resistance to soybean cyst nematode. Received: 13 July 1999 / Accepted: 8 August 1999  相似文献   

19.
Twenty-one isolates of 18 fungal species were tested on water agar for their pathogenicity to eggs of Heterodera glycines. An egg-parasitic index (EPI) for each of these fungi was recorded on a scale from 0 to 10, and hatch of nematode eggs was determined after exposure to the fungi on water agar for 3 weeks at 24 C. The EPI for Verticillium chlamydosporium was 7.6, and the fungus reduced hatch 74%. Pyrenochaeta terrestris and two sterile fungi also showed a high EPI and reduced hatch 42-73%. Arthrobotrys dactyloides, Fusarium oxysporum, Paecilomyces lilacinus, Stagonospora heteroderae, Neocosmospora vasinfecta, Fusarium solani, and Exophiala pisciphila were moderately pathogenic to eggs (EPI was 2.0-4.5, and hatch was reduced 21-56%). Beauveria bassiana, Hirsutella rhossiliensis, Hirsutella thompsonii, Dictyochaeta heteroderae, Dictyochaeta coffeae, Gliocladium catenulatum, and Cladosporium sp. showed little parasitism of nematode eggs but reduced hatch. A negative correlation was observed between hatch and fungal parasitism of eggs. Fusarium oxysporum, H. rhossiliensis, P. lilacinus, S. heteroderae, V. chlamydosporium, and sterile fungus 1 also were tested in soil in a greenhouse test. After 3 months, the nematode densities were lower in soil treated with H. rhossiliensis and V. chlamydosporium than in untreated soil. The nematode population densities were correlated negatively with the EPI, but not with the percentage of cysts colonized by the fungi. Plant weights and heights generally increased in the soil treated with the fungi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号