首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The initial response of individuals to human‐induced environmental change is often behavioural. This can improve the performance of individuals under sudden, large‐scale perturbations and maintain viable populations. The response can also give additional time for genetic changes to arise and, hence, facilitate adaptation to new conditions. On the other hand, maladaptive responses, which reduce individual fitness, may occur when individuals encounter conditions that the population has not experienced during its evolutionary history, which can decrease population viability. A growing number of studies find human disturbances to induce behavioural responses, both directly and by altering factors that influence fitness. Common causes of behavioural responses are changes in the transmission of information, the concentration of endocrine disrupters, the availability of resources, the possibility of dispersal, and the abundance of interacting species. Frequent responses are alterations in habitat choice, movements, foraging, social behaviour and reproductive behaviour. Behavioural responses depend on the genetically determined reaction norm of the individuals, which evolves over generations. Populations first respond with individual behavioural plasticity, whereafter changes may arise through innovations and the social transmission of behavioural patterns within and across generations, and, finally, by evolution of the behavioural response over generations. Only a restricted number of species show behavioural adaptations that make them thrive in severely disturbed environments. Hence, rapid human‐induced disturbances often decrease the diversity of native species, while facilitating the spread of invasive species with highly plastic behaviours. Consequently, behavioural responses to human‐induced environmental change can have profound effects on the distribution, adaptation, speciation and extinction of populations and, hence, on biodiversity. A better understanding of the mechanisms of behavioural responses and their causes and consequences could improve our ability to predict the effects of human‐induced environmental change on individual species and on biodiversity.  相似文献   

2.
The effect of shading on xylem hydraulic traits and xylem anatomy was studied in hybrid poplar (Populus trichocarpa x deltoides, clone H11-11). Hydraulic measurements conducted on stem segments of 3-month-old saplings grown in shaded (SH) or control light (C) conditions indicated that shading resulted in more vulnerable and less efficient xylem. Air is thought to enter vessels through pores in inter-vessel pit membranes, thereby nucleating cavitation. Therefore, we tested if the ultrastructure and/or chemistry of pit membranes differed in SH and C plants. Transmission electron micrographs revealed that pit membranes were thinner in SH, which was paralleled by lower compound middle lamella thickness. Immunolabelling with JIM5 and JIM7 monoclonal antibodies surprisingly indicated that pectic homogalacturonans were not present in the mature pit membrane regardless of the light treatment. Porosity measurements conducted with scanning electron microscopy were significantly affected by the method used for sample dehydration. Drying through a gradual ethanol series seems to be a better alternative to drying directly from a hydrated state for pit membrane observations in poplar. Scanning electron microscopy based estimates of pit membrane porosity probably overestimated real porosity as suggested by the results from the 'rare pit' model.  相似文献   

3.
Species‐specific microsatellite markers were obtained for the unambiguous recognition of five poplar species of ecological and commercial importance to eastern North America: the native species Populus balsamifera and Populus deltoides, the exotic species Populus maximowiczii, Populus nigra, Populus trichocarpa and their interspecific hybrids. Forty‐four of 71 tested primer pairs amplified simple sequence repeat (SSR) loci for all five taxa. Six of these loci showed non‐overlapping allelic diversity between species, including fixed differences. Together, they were useful to identify unambiguously the five taxa and to validate parental contributions in a group of hybrid progeny. These markers will be invaluable to detect gene flow from plantations of exotic poplar into adjacent stands of native species and between the two potentially hybridizing native species P. balsamifera and P. deltoides.  相似文献   

4.
Female choice can impose persistent directional selection on male sexually selected traits, yet such traits often exhibit high levels of phenotypic variation. One explanation for this paradox is that if sexually selected traits are costly, only the fittest males are able to acquire and allocate the resources required for their expression. Furthermore, because male condition is dependent on resource allocation, condition dependence in sexual traits is expected to underlie trade‐offs between reproduction and other life‐history functions. In this study we test these ideas by experimentally manipulating diet quality (carotenoid levels) and quantity in the guppy (Poecilia reticulata), a livebearing freshwater fish that is an important model for understanding relationships between pre‐ and post‐copulatory sexually selected traits. Specifically, we test for condition dependence in the expression of pre‐ and postcopulatory sexual traits (behavior, ornamentation, sperm traits) and determine whether diet manipulation mediates relationships among these traits. Consistent with prior work we found a significant effect of diet quantity on the expression of both pre‐ and postcopulatory male traits; diet‐restricted males performed fewer sexual behaviors and exhibited significant reductions in color ornamentation, sperm quality, sperm number, and sperm length than those fed ad libitum. However, contrary to our expectations, we found no significant effect of carotenoid manipulation on the expression of any of these traits, and no evidence for a trade‐off in resource allocation between pre‐ and postcopulatory episodes of sexual selection. Our results further underscore the sensitivity of behavioral, ornamental, and ejaculate traits to dietary stress, and highlight the important role of condition dependence in maintaining the high variability in male sexual traits.  相似文献   

5.
Invasive species cope with novel environments through both phenotypic plasticity and evolutionary change. However, the environmental factors that cause evolutionary divergence in invasive species are poorly understood. We developed predictions for how different life‐history traits, and plasticity in those traits, may respond to environmental gradients in seasonal temperatures, season length and natural enemies. We then tested these predictions in four geographic populations of the invasive cabbage white butterfly (Pieris rapae) from North America. We examined the influence of two rearing temperatures (20 and 26.7 °C) on pupal mass, pupal development time, immune function and fecundity. As predicted, development time was shorter and immune function was greater in populations adapted to longer season length. Also, phenotypic plasticity in development time was greater in regions with shorter growing seasons. Populations differed significantly in mean and plasticity of body mass and fecundity, but these differences were not associated with seasonal temperatures or season length. Our study shows that some life‐history traits, such as development time and immune function, can evolve rapidly in response to latitudinal variation in season length and natural enemies, whereas others traits did not. Our results also indicate that phenotypic plasticity in development time can also diverge rapidly in response to environmental conditions for some traits.  相似文献   

6.
Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long‐standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade‐off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti‐nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade‐off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.  相似文献   

7.
In response to parasite exposure, organisms from a variety of taxa undergo a shift in reproductive investment that may trade off with other life‐history traits including survival and immunity. By suppressing reproduction in favour of somatic and immunological maintenance, hosts can enhance the probability of survival and recovery from infection. By plastically enhancing reproduction through terminal investment, on the other hand, hosts under the threat of disease‐induced mortality could enhance their lifetime reproductive fitness through reproduction rather than survival. However, we know little about the evolution of these strategies, particularly when hosts can recover and even bequeath protection to their offspring. In this study, we develop a stochastic agent‐based model that competes somatic maintenance and terminal investment strategies as they trade off differentially with lifespan, parasite resistance, recovery and transgenerational immune priming. Our results suggest that a trade‐off between reproduction and recovery can drive directional selection for either terminal investment or somatic maintenance, depending on the cost of reproduction to lifespan. However, some conditions, such as low virulence with a high cost of reproduction to lifespan, can favour diversifying selection for the coexistence of both strategies. The introduction of transgenerational priming into the model favours terminal investment when all strategies are equally likely to produce primed offspring, but favours somatic maintenance if it confers even a slight priming advantage over terminal investment. Our results suggest that both immune priming and recovery may modulate the evolution of reproductive shift diversity and magnitude upon exposure to parasites.  相似文献   

8.
Plastic adjustments of physiological tolerance to a particular stressor can result in fitness benefits for resistance that might manifest not only in that same environment but also be advantageous when faced with alternative environmental stressors, a phenomenon termed ‘cross‐tolerance’. The nature and magnitude of cross‐tolerance responses can provide important insights into the underlying genetic architecture, potential constraints on or versatility of an organism's stress responses. In this study, we tested for cross‐tolerance to a suite of abiotic factors that likely contribute to setting insect population dynamics and geographic range limits: heat, cold, desiccation and starvation resistance in adult Ceratitis rosa following acclimation to all these isolated individual conditions prior to stress assays. Traits of stress resistance scored included critical thermal (activity) limits, chill coma recovery time (CCRT), heat knockdown time (HKDT), desiccation and starvation resistance. In agreement with other studies, we found that acclimation to one stress typically increased resistance for that same stress experienced later in life. A more novel outcome, however, is that here we also found substantial evidence for cross‐tolerance. For example, we found an improvement in heat tolerance (critical thermal maxima, CTmax) following starvation or desiccation hardening and improved desiccation resistance following cold acclimation, indicating pronounced cross‐tolerance to these environmental stressors for the traits examined. We also found that two different traits of the same stress resistance differed in their responsiveness to the same stress conditions (e.g. HKDT was less cross‐resistant than CTmax). The results of this study have two major implications that are of broader importance: (i) that these traits likely co‐evolved to cope with diverse or simultaneous stressors, and (ii) that a set of common underlying physiological mechanisms might exist between apparently divergent stress responses in this species. This species may prove to be a valuable model for future work on the evolutionary and mechanistic basis of cross‐tolerance.  相似文献   

9.
The assumption of a trade‐off between development time and fecundity, resulting from a positive correlation between body size and fecundity and between body size and development time, is a common feature of life history models. The present paper examines the evidence for such a trade‐off as indicated by genetic correlations between traits. The genetic covariances between traits are derived using a model in which maturation occurs when the organism achieves a genetically variable size threshold, and fecundity is an allometric function of body size with one genetically variable parameter (excluding body size itself). This model predicts that the heritabilities of the life history traits (growth rate, development time, fecundity) will not necessarily be less than the heritability of adult size (i.e. morphological traits). It is shown that if growth rate is genetically correlated with adult size then it is not possible, in general, to predict the sign of the genetic correlation between development time and fecundity. For particular cases the signs of the covariances between traits can be predicted. These predictions are tested using data drawn from the literature.  相似文献   

10.
11.
Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial‐scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade‐offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade‐offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology.  相似文献   

12.
13.
We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides×Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Ψ50) varied from ?1.60 to ?2.40 MPa. Drought‐acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependant, with Ψ50 being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Ψ50 was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water‐use efficiency. At the whole‐plant level, increased safety was associated with higher shoot growth potential under well‐irrigated regime only. We conclude that common trade‐offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales.  相似文献   

14.
Co‐evolution of host–parasitoid interactions is determined by the costs of host resistance, which received empirical evidence, and the costs of parasitoid virulence, which have been mostly hypothesized. Asobara tabida is a parasitoid, which mainly parasitizes Drosophila melanogaster and D. subobscura, the first species being able to resist to the parasitoid development while the second species is not. To parasitize resistant hosts, including D. melanogaster, A. tabida develops sticky eggs, which prevent encapsulation, but this virulence mechanism may be costly. Interindividual and interpopulation variation in the proportion of sticky eggs respectively allowed us to (i) artificially select and compare life‐history traits of a virulent and a nonvirulent laboratory strain, and (ii) compare a virulent and a nonvirulent field strain, to investigate the hypothetical costs of virulence. We observed strong differences between the 2 laboratory strains. The nonvirulent strain invested fewer resources in reproduction and walked less than the virulent one but lived longer. Concerning the field strains, we observed that the nonvirulent strain had larger wings while the virulent one walked more and faster. All together, our results suggest that virulence may not always be costly, but rather that different life histories associated with different levels of virulence may coexist at both intra‐ and interpopulation levels.  相似文献   

15.
Maternal and environmental effects can profoundly influence offspring phenotypes, independent of genetic effects. Within avian broods, both the asymmetric post‐hatching environment created by hatching asynchrony and the differential maternal investment through the laying sequence have important consequences for individual nestlings in terms of the allocation of resources to body structures with different contributions to fitness. The purpose of this study was to evaluate the relative importance of post‐hatching environmental and maternal effects in generating variation in offspring phenotypes. First, an observational study showed that within blue tit, Cyanistes caeruleus, broods, late‐hatched nestlings allocated resources to tarsus development, maintained mass gain and head‐bill growth and directed resources away from the development of fourth primary feathers. Second, a hatching order manipulation experiment resulted in nestlings from first‐laid eggs hatching last, thereby allowing comparison with both late and early‐hatched nestlings. Experimental nestlings had growth patterns which were closer to late‐hatched nestlings, suggesting that within‐brood growth patterns are determined by post‐hatching environmental effects. Therefore, we conclude that post‐hatching environmental effects play an important role in generating variation in offspring phenotypes.  相似文献   

16.
Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought‐induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long‐term by quantifying wood‐anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water‐use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long‐lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2–5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long‐term capacity of trees to withstand drought‐induced dieback.  相似文献   

17.
In the wing dimorphic sand cricket, Gryllus firmus, there is a pronounced trade-off between flight capability and fecundity. This trade-off is found both between morphs and within the macropterous morph, in which fecundity is negatively correlated with the mass of the principle flight muscles, the dorso-longitudinal muscles (DLM). In this paper, we examine how this trade-off is affected by a reduction in food and its genetic basis. We find that the relative fitness of the two wing morphs is not changed although both fecundity and DLM mass are decreased. A quantitative genetic analysis shows that the trade-off function is genetically variable but that most of the variation occurs in the intercept rather than the slope of the function. Analysis further indicates a very high genetic correlation between environments (food ration) supporting the hypothesis of a strong functional constraint between reproduction and flight capability.  相似文献   

18.
Bacteria that are introduced into aquatic habitats face a low substrate environment interspersed with rare productive ‘hotspots’, as well as high protistan grazing. Whereas the former condition should select for growth performance, the latter should favour traits that reduce predation mortality, such as the formation of large cell aggregates. However, protected morphotypes often convey a growth disadvantage, and bacteria thus face a trade‐off between investing in growth or defence traits. We set up an evolutionary experiment with the freshwater isolate Sphingobium sp. strain Z007 that conditionally increases aggregate formation in supernatants from a predator–prey coculture. We hypothesized that low substrate levels would favour growth performance and reduce the aggregated subpopulation, but that the concomitant presence of a flagellate predator might conserve the defence trait. After 26 (1‐week) growth cycles either with (P+) or without (P?) predators, bacteria had evolved into strikingly different phenotypes. Strains from P? had low numbers of aggregates and increased growth yield, both at the original rich growth conditions and on various single carbon sources. By contrast, isolates from the P+ treatment formed elevated proportions of defence morphotypes, but exhibited lower growth yield and metabolic versatility. Moreover, the evolved strains from both treatments had lost phenotypic plasticity of aggregate formation. In summary, the (transient) residence of bacteria at oligotrophic conditions may promote a facultative oligotrophic life style, which is advantageous for survival in aquatic habitats. However, the investment in defence against predation mortality may constrain microbial adaptation to the abiotic environment.  相似文献   

19.
Ethanol is an important larval resource and toxin for natural Drosophila melanogaster populations, and ethanol tolerance is genetically variable within and among populations. If ethanol‐tolerant genotypes have relatively low fitness in the absence of ethanol, as suggested by the results of an earlier study, genetic variation for ethanol tolerance could be maintained by variation in ethanol levels among breeding sites. I selected for ethanol tolerance in large laboratory populations by maintaining flies on ethanol‐supplemented media. After 90 generations, the populations were compared with control populations in egg‐to‐adult survival and development rate on ethanol‐supplemented and unsupplemented food. When compared on ethanol‐supplemented food, the ethanol‐selected populations had higher survival and faster development than the control populations, but on unsupplemented food, the populations did not differ in either trait. These results give no evidence for a ‘trade‐off’ between the ability to survive and develop rapidly in the presence of ethanol and the ability to do so in its absence. The effect of physiological induction of ethanol tolerance by exposing eggs to ethanol was also investigated; exposing eggs to ethanol strongly increased subsequent larval survival on ethanol‐supplemented food, but did not affect survival on regular food, and slowed development on both ethanol‐supplemented and regular food, partly by delaying egg hatch.  相似文献   

20.
Development of xylem embolism during water stress in two diffuse‐porous hardwoods, Katsura (Cercidiphyllum japonicum) and Japanese white birch (Betula platyphylla var. japonica), was observed non‐destructively under a compact magnetic resonance imaging (MRI) system in addition to conventional quantitation of hydraulic vulnerability to cavitation from excised stem segments. Distribution of white and dark areas in MR images corresponded well to the distribution of water‐filled/embolized vessels observed by cryo‐scanning electron microscopy in both species. Water‐filled vessels were observed in MR images as white areas in Katsura and as white dots in Japanese white birch, respectively, and embolisms could be detected as a change to dark areas. The increase in the relative embolized area (REA: %) in the cross‐sectional area of total xylem during water stress, which was estimated from the binarized MR images, was consistent with the hydraulic vulnerability curves of these species. From the non‐destructive MRI observations, cavitation induced by water stress was shown to develop earlier in 1‐ or 2‐year‐old xylem than in the current‐year xylem in both species; that is, the vulnerability to cavitation differs between vessels in the current‐year xylem and those in older annual rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号