首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Elevating the lipid content in vegetative tissues has emerged as a new strategy for increasing energy density and biofuel yield of crops. Storage lipids in contrast to structural and signaling lipids are mainly composed of glycerol esters of fatty acids, also known as triacylglycerol (TAG). TAGs are one of the most energy‐rich and abundant forms of reduced carbon available in nature. Therefore, altering the carbon‐partitioning balance in favour of TAG in vegetative tissues of sugarcane, one of the highest yielding biomass crops, is expected to drastically increase energy yields. Here we report metabolic engineering to elevate TAG accumulation in vegetative tissues of sugarcane. Constitutive co‐expression of WRINKLED1 (WRI1), diacylglycerol acyltransferase1‐2 (DGAT1‐2) and oleosin1 (OLE1) and simultaneous cosuppression of ADP‐glucose pyrophosphorylase (AGPase) and a subunit of the peroxisomal ABC transporter1 (PXA1) in transgenic sugarcane elevated TAG accumulation in leaves or stems by 95‐ or 43‐fold to 1.9% or 0.9% of dry weight (DW), respectively, while expression or suppression of one to three of the target genes increased TAG levels by 1.5‐ to 9.5‐fold. Accumulation of TAG in vegetative progeny plants was consistent with the results from primary transgenics and contributed to a total fatty acid content of up to 4.7% or 1.7% of DW in mature leaves or stems, respectively. Lipid droplets were visible within mesophyll cells of transgenic leaves by confocal fluorescence microscopy. These results provide the basis for optimizations of TAG accumulation in sugarcane and other high yielding biomass grasses and will open new prospects for biofuel applications.  相似文献   

4.
Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants. Previously, expression of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene in wild‐type Arabidopsis seeds resulted in the accumulation of 45 mol% of unusual 3‐acetyl‐1,2‐diacyl‐sn‐glycerols (acetyl‐TAGs) in the seed oil (Durrett et al., 2010 PNAS 107:9464). Expression of EaDAcT in dgat1 mutants compromised in their ability to synthesize regular triacylglycerols increased acetyl‐TAGs to 65 mol%. Camelina and soybean transformed with the EaDAcT gene accumulate acetyl‐triacylglycerols (acetyl‐TAGs) at up to 70 mol% of seed oil. A similar strategy of coexpression of EaDAcT together with RNAi suppression of DGAT1 increased acetyl‐TAG levels to up to 85 mol% in field‐grown transgenic Camelina. Additionally, total moles of triacylglycerol (TAG) per seed increased 20%. Analysis of the acetyl‐TAG fraction revealed a twofold reduction in very long chain fatty acids (VLCFA), consistent with their displacement from the sn‐3 position by acetate. Seed germination remained high, and seedlings were able to metabolize the stored acetyl‐TAGs as rapidly as regular triacylglycerols. Viscosity, freezing point and caloric content of the Camelina acetyl‐TAG oils were reduced, enabling use of this oil in several nonfood and food applications.  相似文献   

5.
Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA‐producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural‐occurring source plants. Thus, to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co‐expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA‐accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation and seedling development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon co‐expression of SfLPAT with EcCPS, di‐CPA‐PC increased by ~50% relative to lines expressing EcCPS alone with the di‐CPA‐PC primarily observed in the embryonic axis and mono‐CPA‐PC primarily in cotyledon tissue. EcCPS‐SfLPAT lines revealed a redistribution of CPA from the sn‐1 to sn‐2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. The identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.  相似文献   

6.
LEAFY COTYLEDON 2 (LEC2) is a key regulator of seed maturation in Arabidopsis. To unravel some of its complex pleiotropic functions, analyses were performed with transgenic plants expressing an inducible LEC2:GR protein. The chimeric protein is functional and can complement lec2 mutation. Interestingly, the induction of LEC2 leads to the accumulation of storage oil in leaves. In addition, short-term induction and use of translation inhibitors allowed to demonstrate that LEC2 can directly trigger the accumulation of seed specific mRNAs. Consistent with these results, the expression of three other major seed regulators namely, LEC1, FUS3, and ABI3 were also induced by LEC2 activation.  相似文献   

7.
Phospholipid:diacylglycerol acyltransferase (PDAT) and diacylglycerol:acyl CoA acyltransferase play overlapping roles in triacylglycerol (TAG) assembly in Arabidopsis, and are essential for seed and pollen development, but the functional importance of PDAT in vegetative tissues remains largely unknown. Taking advantage of the Arabidopsis tgd1–1 mutant that accumulates oil in vegetative tissues, we demonstrate here that PDAT1 is crucial for TAG biosynthesis in growing tissues. We show that disruption of PDAT1 in the tgd1–1 mutant background causes serious growth retardation, gametophytic defects and premature cell death in developing leaves. Lipid analysis data indicated that knockout of PDAT1 results in increases in the levels of free fatty acids (FFAs) and diacylglycerol. In vivo 14C‐acetate labeling experiments showed that, compared with wild‐type, tgd1–1 exhibits a 3.8‐fold higher rate of fatty acid synthesis (FAS), which is unaffected by disruption or over‐expression of PDAT1, indicating a lack of feedback regulation of FAS in tgd1–1. We also show that detached leaves of both pdat1–2 and tgd1–1 pdat1–2 display increased sensitivity to FFA but not to diacylglycerol. Taken together, our results reveal a critical role for PDAT1 in mediating TAG synthesis and thereby protecting against FFA‐induced cell death in fast‐growing tissues of plants.  相似文献   

8.
Premature leaf senescence in rice is one of the most common factors affecting the plant's development and yield. Although methyltransferases are involved in diverse biological functions, their roles in rice leaf senescence have not been previously reported. In this study, we identified the premature leaf senescence 3 (pls3) mutant in rice, which led to early leaf senescence and early heading date. Further investigations revealed that premature leaf senescence was triggered by the accumulation of reactive oxygen species. Using physiological analysis, we found that chlorophyll content was reduced in the pls3 mutant leaves, while hydrogen peroxide (H2O2) and malondialdehyde levels were elevated. Consistent with these findings, the pls3 mutant exhibited hypersensitivity to exogenous hydrogen peroxide. The expression of other senescence‐associated genes such as Osh36 and RCCR1 was increased in the pls3 mutant. Positional cloning indicated the pls3 phenotype was the result of a mutation in OsMTS1, which encodes an O‐methyltransferase in the melatonin biosynthetic pathway. Functional complementation of OsMTS1 in pls3 completely restored the wild‐type phenotype. We found leaf melatonin content to be dramatically reduced in pls3, and that exogenous application of melatonin recovered the pls3 mutant's leaf senescence phenotype to levels comparable to that of wild‐type rice. Moreover, overexpression of OsMTS1 in the wild‐type plant increased the grain yield by 15.9%. Our results demonstrate that disruption of OsMTS1, which codes for a methyltransferase, can trigger leaf senescence as a result of decreased melatonin production.  相似文献   

9.
10.
11.
Vernolic acid (cis‐12‐epoxy‐octadeca‐cis‐9‐enoic acid) is valuable as a renewable chemical feedstock. This fatty acid can accumulate to high levels in the seed oil of some plant species such as Vernonia galamensis and Stokesia laevis which are unsuitable for large‐scale production. A cost‐effective alternative for production of epoxy fatty acids is to genetically engineer its biosynthesis in commercial oilseeds. An epoxygenase cDNA (SlEPX) responsible for vernolic acid synthesis and two acyl‐CoA : diacylglycerol acyltransferase cDNAs (VgDGAT1 and VgDGAT2) catalysing triacylglycerol (TAG) formation were cloned from developing seeds of S. laevis and V. galamensis. Co‐expression of SlEPX and VgDGAT1 or VgDGAT2 greatly increases accumulation of vernolic acid both in petunia leaves and soybean somatic embryos. Seed‐specific expression of VgDGAT1 and VgDGAT2 in SlEPX mature soybean seeds results in vernolic acid levels of ~15% and 26%. Both DGAT1 and DGAT2 increase epoxy fatty acid accumulation with DGAT2 having much greater impact.  相似文献   

12.
When cultivated under stress conditions, many plants and algae accumulate oil. The unicellular green microalga Chlamydomonas reinhardtii accumulates neutral lipids (triacylglycerols; TAGs) during nutrient stress conditions. Temporal changes in TAG levels in nitrogen (N)‐ and phosphorus (P)‐starved cells were examined to compare the effects of nutrient depletion on TAG accumulation in C. reinhardtii. TAG accumulation and fatty acid composition were substantially changed depending on the cultivation stage before nutrient starvation. Profiles of TAG accumulation also differed between N and P starvation. Logarithmic‐growth‐phase cells diluted into fresh medium showed substantial TAG accumulation with both N and P deprivation. N deprivation induced formation of oil droplets concomitant with the breakdown of thylakoid membranes. In contrast, P deprivation substantially induced accumulation of oil droplets in the cytosol and maintaining thylakoid membranes. As a consequence, P limitation accumulated more TAG both per cell and per culture medium under these conditions. To enhance oil accumulation under P deprivation, we constructed a P deprivation‐dependent overexpressor of a Chlamydomonas type‐2 diacylglycerol acyl‐CoA acyltransferase (DGTT4) using a sulphoquinovosyldiacylglycerol 2 (SQD2) promoter, which was up‐regulated during P starvation. The transformant strongly enhanced TAG accumulation with a slight increase in 18 : 1 content, which is a preferred substrate of DGTT4. These results demonstrated enhanced TAG accumulation using a P starvation–inducible promoter.  相似文献   

13.
  • Ethylene and nitric oxide (NO) act as endogenous regulators during leaf senescence. Levels of ethylene or its precursor 1‐aminocyclopropane‐1‐carboxylate acid (ACC) depend on the activity of ACC synthases (ACS), and NO production is controlled by NO‐associated 1 (NOA1). However, the integration mechanisms of ACS and NOA1 activity still need to be explored during leaf senescence.
  • Here, using experimental techniques, such as physiological and molecular detection, liquid chromatography‐tandem mass spectrometry and fluorescence measurement, we investigated the relevant mechanisms.
  • Our observations showed that the loss‐of‐function acs1‐1 mutant ameliorated age‐ or dark‐induced leaf senescence syndrome, such as yellowing and loss of chlorophyll, that acs1‐1 reduced ACC accumulation mainly in mature leaves and that acs1‐1‐promoted NOA1 expression and NO accumulation mainly in juvenile leaves, when compared with the wild type (WT). But the leaf senescence promoted by the NO‐deficient noa1 mutant was not involved in ACS1 expression. There was a similar sharp reduction of ACS1 and NOA1 expression with the increase in WT leaf age, and this inflection point appeared in mature leaves and coincided with the onset of leaf senescence.
  • These findings suggest that NOA1‐dependent NO accumulation blocked the ACS1‐induced onset of leaf senescence, and that ACS1 activity corresponds to the onset of leaf senescence in Arabidopsis.
  相似文献   

14.
15.
Rab family proteins are small GTP-binding proteins involved in intracellular trafficking. They play critical roles in several plant development processes. Different expression patterns of 46 Rabs in the rice genome were examined in various rice tissues and in leaves treated with plant growth regulators and under senescence conditions. One of the OsRab genes, OsRab7B3, closely associated with senescence in expression pattern, was chosen for functional analysis. Expression of sGFP under the control of the OsRab7B3 promoter increased in leaves when ABA and NaCl were applied or when kept in dark. In transgenic rice overexpressing OsRab7B3, the senescence-related genes were upregulated and leaf senescence was significantly enhanced under dark conditions. Moreover, leaf yellowing occurred earlier in the transgenic plants than in the wild type at the ripening stage. Hence it is suggested that OsRab7B3 act as a stress–inducible gene that plays an important role in the leaf senescence process.  相似文献   

16.
We studied the impact of delayed leaf senescence on the functioning of plants growing under conditions of nitrogen remobilization. Interactions between cytokinin metabolism, Rubisco and protein levels, photosynthesis and plant nitrogen partitioning were studied in transgenic tobacco (Nicotiana tabacum L.) plants showing delayed leaf senescence through a novel type of enhanced cytokinin syn‐thesis, i.e. targeted to senescing leaves and negatively auto‐regulated (PSAG12IPT), thus preventing developmental abnormalities. Plants were grown with growth‐limiting nitrogen supply. Compared to the wild‐type, endogenous levels of free zeatin (Z)‐ and Z riboside (ZR)‐type cytokinins were increased up to 15‐fold (total ZR up to 100‐fold) in senescing leaves, and twofold in younger leaves of PSAG12IPT. In these plants, the senescence‐associated declines in N, protein and Rubisco levels and photosynthesis rates were delayed. Senescing leaves accumulated more (15N‐labelled) N than younger leaves, associated with reduced shoot N accumulation (–60%) and a partially inverted canopy N profile in PSAG12IPT plants. While root N accumulation was not affected, N translocation to non‐senescing leaves was progressively reduced. We discuss potential consequences of these modified sink–source relations, associated with delayed leaf senescence, for plant productivity and the efficiency of utilization of light and minerals.  相似文献   

17.
Metabolic engineering for hyperaccumulation of lipids in vegetative tissues of high biomass crops promises a step change in oil yields for the production of advanced biofuels. Energycane is the ideal feedstock for this approach due to its exceptional biomass production and persistence under marginal conditions. Here, we evaluated metabolically engineered energycane with constitutive expression of the lipogenic factors WRINKLED1 (WRI1), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1), and OLEOSIN1 (OLE1) for the accumulation of triacylglycerol (TAG), total fatty acid (TFA), and biomass under field conditions at the University of Florida-IFAS experiment station near Citra, Florida. TAG and TFA accumulation were highest in leaves (up to 9.9% and 12.9% of DW, respectively), followed by juice from crushed stems, stems, and roots. TAG and TFA accumulation increased up to harvest time and correlated highest with OLE1 and DGAT1 expression. Biomass dry weight, TAG, and TFA content differed greatly depending on DGAT1 and OLE1 expression in transgenic lines with similar WRI1 expression. Biomass did not significantly differ between WT and line L2 with DAGT1 and OLE1 expressed at low levels and TAG and TFA accumulating to 12- and 1.6-fold that of WT leaves, respectively. In contrast, line L13, with intron-mediated enhancement of DGAT1 expression, displayed a 245- to 330-fold increase in TAG and a 4.75- to 6.45-fold increase in TFA content compared with WT leaves and a biomass reduction of 52%. These results provide the basis for developing novel feedstocks for expanding plant lipid production and point to new prospects for advanced biofuels.  相似文献   

18.
The seed maturation program only occurs during late embryogenesis, and repression of the program is pivotal for seedling development. However, the mechanism through which this repression is achieved in vegetative tissues is poorly understood. Here we report a microRNA (miRNA)–mediated repression mechanism operating in leaves. To understand the repression of the embryonic program in seedlings, we have conducted a genetic screen using a seed maturation gene reporter transgenic line in Arabidopsis (Arabidopsis thaliana) for the isolation of mutants that ectopically express seed maturation genes in leaves. One of the mutants identified from the screen is a weak allele of ARGONAUTE1 (AGO1) that encodes an effector protein for small RNAs. We first show that it is the defect in the accumulation of miRNAs rather than other small RNAs that causes the ectopic seed gene expression in ago1. We then demonstrate that overexpression of miR166 suppresses the derepression of the seed gene reporter in ago1 and that, conversely, the specific loss of miR166 causes ectopic expression of seed maturation genes. Further, we show that ectopic expression of miR166 targets, type III homeodomain-leucine zipper (HD-ZIPIII) genes PHABULOSA (PHB) and PHAVOLUTA (PHV), is sufficient to activate seed maturation genes in vegetative tissues. Lastly, we show that PHB binds the promoter of LEAFY COTYLEDON2 (LEC2), which encodes a master regulator of seed maturation. Therefore, this study establishes a core module composed of a miRNA, its target genes (PHB and PHV), and the direct target of PHB (LEC2) as an underlying mechanism that keeps the seed maturation program off during vegetative development.  相似文献   

19.
20.
Phospholipase D (PLD) is capable of hydrolyzing membrane phospholipids, producing phosphatidic acid. To alter phospholipid profiles in soybean seed, we attenuated PLD enzyme activity by an RNA interference construct using the partial sequence from a soybean PLDα gene. Two transgenic soybean lines were established by particle inflow gun (PIG) bombardment by co‐bombarding with pSPLDi and pHG1 vectors. The lines were evaluated for the presence and expression of transgenes thoroughly through the T4 generation. PLD‐suppressed soybean lines were characterized by decreased PLDα enzyme activity and decreased PLDα protein both during seed development and in mature seeds. There was no change in total phospholipid amount; however, the PLD‐attenuated transgenic soybean seed had higher levels of di18 : 2 (dilinoleoyl)‐phosphatidylcholine (PC) and ‐phosphatidylethanolamine (PE) in seeds than the non‐transgenic lines. The increased polyunsaturation was at the expense of PC and PE species containing monounsaturated or saturated fatty acids. In addition to increased unsaturation in the phospholipids, there was a decrease in unsaturation of the triacylglycerol (TAG) fraction of the soybean seeds. Considering recent evidence for the notion that desaturation of fatty acids occurs in the PC fraction and that the PC → DAG (diacylglycerol) → TAG pathway is the major route of TAG biosynthesis in developing soybean seed, the current data suggest that PLDα suppression slows the conversion of PC to TAG. This would be consistent with PLD playing a positive role in that conversion. The data indicate that soybean PLD attenuation is a potentially useful approach to altering properties of edible and industrial soybean lecithin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号