首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
To address the questions of whether allocation of carbohydrates to roots is influenced by ionic form of nitrogen absorbed and whether allocation of carbohydrates to roots in turn influences proportionality between NH4+ and NO3? uptake from mixed sources, NH4+ and NO3? were supplied separately to halves of a split-root hydroponic system and were supplied in combination to a whole-root system. Dry matter accumulation in the split-root system was 18% less in the NH4+-fed axis than in the NO3?-fed axis. This, however, does not indicate that partitioning of carbohydrate between the two axes was different. Most of the reduction in dry matter accumulation in the NH4+-fed axis can be accounted for by the retransport of CH2O equivalents from the root back to the shoot with amino acids produced by NH4+ assimilation. Uptake of NH4+ or NO3? by the respective halves of the split-root system was proportional to the estimated allocation of carbohydrate to that half. When NH4+ and NO3? were supplied to separate halves of the split-root system, the cumulative NH4+ to NO3? uptake ratio was 0.81. When supplied in combination to the whole-root system, the cumulative NH4+ to NO3? uptake ratio was 1.67. Thus, while the shoot may affect total nitrogen uptake through the export of carbohydrates to roots, the shoot (common for halves of the split-root system) apparently does not exert a direct effect on proportionality of NH4+ and NO3? uptake by roots. For whole roots supplied with both NH4+ and NO3?, the restriction in uptake of NO3? may involve a stimulation of NO3? efflux rather than an inhibition of NO3? influx. While only the net uptake of NH4+ and NO3? was measured by ion chromatography, monitoring at approximately hourly intervals during the first 3 days of treatment revealed irregularly occurring intervals of both depletion (net influx) and enrichment (net efflux) in solutions. In the case of NH4+, numbers of net efflux events were similar (21 to 24 out of 65 sequential sampling intervals) whether NH4+ was supplied with NO3? to whole-root systems or separately to an axis of the split-root system. In the case of NO3?, however, the number of net efflux events increased from 8 when NO3? was supplied to a separate axis of the split-root system to between 19 and 24 when NO3? was supplied with NH4+ to whole-root systems.  相似文献   

2.
Al stress and ammonium–nitrogen nutrition often coexist in acidic soils due to their low pH and weak nitrification ability. Rice is the most Al-resistant species among small grain cereal crops and prefers NH4 + as its major inorganic nitrogen source. This study investigates the effects of NH4 + and NO3 ? on Al toxicity and Al accumulation in rice, and thereby associates rice Al resistance with its NH4 + preference. Two rice subspecies, indica cv. Yangdao6 and japonica cv. Wuyunjing7, were used in this study. After treatment with or without Al under conditions of varying NH4 + and NO3 ? supply, rice seedlings were harvested for the determination of root elongation, callose content, biomass, Al concentration and medium pH. The results indicated that Wuyunjing7 was more Al-resistant and NH4 +-preferring than Yangdao6. NH4 + alleviated Al toxicity in two cultivars compared with NO3 ?. Both NH4 +-Al supply and pretreatment with NH4 + reduced Al accumulation in roots and root tips compared with NO3 ?. NH4 + decreased but NO3 ? increased the medium pH, and root tips accumulated more Al with a pH increase from 3.5 to 5.5. Increasing the NO3 ? concentration enhanced Al accumulation in root tips but increasing the NH4 + concentration had the opposite effect. These results show NH4 + alleviates Al toxicity for rice and reduces Al accumulation in roots compared with NO3 ?, possibly through medium pH changes and ionic competitive effects. Making use of the protective effect of NH4 +, in which the Al resistance increases, is advised for acidic soils, and the hypothesis that rice Al resistance is associated with the preferred utilization of NH4 + is suggested.  相似文献   

3.
The nitrogen requirement of plants is predominantly supplied by NH4+ and/or NO3? from the soil solution, but the energetic cost of uptake and assimilation is generally higher for NO3? than for NH4+. We found that CO2 enrichment of the atmosphere enhanced the root uptake capacity for NO3?, but not for NH4+, in field-grown loblolly pine saplings. Increased preference for NO3? at the elevated CO2 concentration was accompanied by increased carbohydrate levels in roots. The results have important implications for the potential consequences of global climate change on plant-and ecosystem-level processes in many temperate forest ecosystems.  相似文献   

4.
The ability of Salvinia natans (L.) All. to tolerate growth in oxic, hypoxic and anoxic nutrient solutions when supplied with either NH4+ or NO3? were studied in the laboratory to test the hypothesis that inorganic N-source affects the response of the plants to O2 deprivation. The relative growth rate (RGR) was significantly reduced in the anoxic treatment, but in the hypoxic treatment RGR was only slightly affected. The NH4+ fed plants generally had a higher shoot to root ratio than the NO3? fed plants, and highest in the anoxic treatment. Plants had more roots and larger leaves when supplied with NH4+ as compared with NO3?, particularly in the oxic treatment, and root length was most affected by O2 deprivation for NO3? fed plants. Cell walls in the endodermis, the bundle sheath and the cortex adjacent to endodermis developed thickened sclerenchymatous walls when deprived of O2, and more so in plants supplied with NO3?. Plants lost chlorophylls, had lower rates of photosynthetic electron transport (ETRmax) and lower quantum yields (Fv/Fm ratios) when grown in anoxic solutions, and the negative effects were mildest for NO3? fed plants suggesting that NO3? may be used as an alternative e?-acceptor in non-cyclic electron transport in the chloroplasts. Overall S. natans grew best on NH4+, but it also grew well on NO3?, and the O2 stress symptoms differed somewhat between NH4+ fed and NO3? fed plants. However, because N-form itself significantly influenced morphology and cell metabolism, it was impossible to conclusively identify the role of N-form for the O2 stress reactions. S. natans is not well-adapted to grow in O2 deficient waters and will not tolerate completely anoxic conditions as will prevail in waters receiving high loadings of organic pollutants such as livestock wastewater.  相似文献   

5.
Ammonia (NH3) is the third most abundant N species in the atmosphere and, due to various natural and anthropogenic sources, can reach high concentrations in some areas. While some plants show effects of toxicity, others are capable of using this N-form and grow well without any utilization of soil-N. Acquisition of atmospheric NH3 will affect the acid-base balance of the plants as absorption and dissolution causes an alkalinisation (production of OH?) and assimilation of NH3 results in an acidification (generation of H+). As there is only a limited capacity for biochemical disposal of excess H+ in shoots, pH regulation may involve H+/OH? extrusion into the media via roots and transport of (in)organic ions between roots and above-ground parts of the plant. Our aim therefore was to assess NH3 acquisition by Lolium perenne and to study the effects of gas phase NH3 on growth, acid-base balance and mineral composition of the plants. The experiments therefore included application of a range of 14NH3 to the shoots and of 15N as NO3?, NH4+ or NH4NO3 to the roots, from which the amount of gas phase NH3 acquisition could be quantified. Analysis of the mineral composition provided data for calculation of acid-base balance as well as for water use efficiencies of the plants. The results indicate that over the range of NH3 supplied, plants from all treatments could utilize gas-phase NH3 as demonstrated by increases in growth and in N and C use efficiencies. Plants receiving NO3? via their roots had a higher capacity to use gaseous NH3 than those growing with NH4+. NH3 assimilation in shoots reduced both the acid load with NH4+ nutrition and the alkaline load with NO3? supply to the roots. The results of the experiments are discussed in relation to possible acid-base regulation mechanisms of the whole plant.  相似文献   

6.
The negative effects of water stress on rice can be alleviated by NH4+ nutrition. However, the effects of mixed nitrogen (N) nutrition (NO3? + NH4+) on resistance to water stress are still not well known. To investigate the response of rice growth to water stress and its relationship with photosynthetic characteristics, a hydroponic experiment supplying different N forms was conducted. Compared with NO3? nutrition, mixed‐N and NH4+ nutrition greatly alleviated the reduction of leaf area, chlorophyll content, and photosynthesis under water stress, whilst subsequently maintaining higher biomass. In contrast, water stress inhibited the root‐shoot ratios in NH4+‐ and mixed‐N‐supplied plants, indicating reduced root growth and higher photosynthate availability to shoots. The following key observations were made: (1) a similar stomatal limitation and low proportion of activated Rubisco were observed among the three different N nutrition regimes; (2) increased mesophyll conductance in NH4+‐ and mixed‐N‐supplied plants simultaneously stimulated leaf photosynthesis and improved the water use efficiency and (3), the maximum carboxylation rate and actual photochemical efficiency of photosystem II in NH4+‐ and mixed‐N‐supplied plants were significantly higher than that in NO3?‐supplied plants, thus resulting in higher photochemical efficiency under water stress. In conclusion, mixed‐N and NH4+ nutrition may be used to develop strategies for improved water stress resistance and stimulated biomass production under conditions of osmotic stress and possibly drought.  相似文献   

7.
In this study we assessed the growth, morphological responses, and N uptake kinetics of Salvinia natans when supplied with nitrogen as NO3, NH4+, or both at equimolar concentrations (500 μM). Plants supplied with only NO3 had lower growth rates (0.17 ± 0.01 g g−1 d−1), shorter roots, smaller leaves with less chlorophyll than plants supplied with NH4+ alone or in combination with NO3 (RGR = 0.28 ± 0.01 g g−1 d−1). Ammonium was the preferred form of N taken up. The maximal rate of NH4+ uptake (Vmax) was 6–14 times higher than the maximal uptake rate of NO3 and the minimum concentration for uptake (Cmin) was lower for NH4+ than for NO3. Plants supplied with NO3 had elevated nitrate reductase activity (NRA) particularly in the roots showing that NO3 was primarily reduced in the roots, but NRA levels were generally low (<4 μmol NO2 g−1 DW h−1). Under natural growth conditions NH4+ is probably the main N source for S. natans, but plants probably also exploit NO3 when NH4+ concentrations are low. This is suggested based on the observation that the plants maintain high NRA in the roots at relatively high NH4+ levels in the water, even though the uptake capacity for NO3 is reduced under these conditions.  相似文献   

8.
The effect of ectomycorrhizal association of Pinus pinaster with Hebeloma cylindrosporum was investigated in relation to the nitrogen source supplied as mineral (NH4+ or NO3?) or organic N (L ‐glutamate) and at 5 mol m?3. Plants were grown for 14 and 16 weeks with mineral and organic N, respectively, and samples were collected during the last 6 weeks of culture. Total fungal biomass was estimated using glucosamine amount and its viability was assessed using the glucosamine to ergosterol ratio. Non‐mycorrhizal plants grew better with NH4+ than with NO3? and grew very slowly when supplied with L ‐glutamate. The presence of the fungus decreased the growth of the host plant with mineral N whereas it increased it with L ‐glutamate. Whatever the N source, most of the living fungal biomass was associated with the roots, whereas the main part of the total biomass was assayed outside the root. The form of mineral N did not significantly affect N accumulation rates over the 42 d in control plants. In mycorrhizal plants grown on either N source, the fungal tissues developing outside of the root were always the main N sink. The ectomycorrhizal association did not change 15NH4+ uptake rate by roots, suggesting that the growth decrease of the host‐plant was related to the carbon cost for fungal growth and N assimilation rather than to a direct effect on NH4+ acquisition. In contrast, in NO3?‐grown plants, in addition to draining carbon for NO3? reduction the fungus competed with the root for NO3? uptake. With NH4+ or NO3? feeding, although mycorrhizal association improved N accumulation in shoots, we concluded that it was unlikely that the fungus had supplied the plant with N. In L ‐glutamate‐grown plants, the presence of the fungus increased the proportion of glutamine in the xylem sap and improved both N nutrition and the growth rate of the host plant.  相似文献   

9.
The effect of exogenous NH4+ on the induction of nitrate reductase activity (NRA; EC 1.6.6.1) and nitrite reductase activity (NiRA; EC 1.7.7.1) in roots of 8-day-old intact barley (Hordeum vulgare L.) seedlings was studied. Enzyme activities were induced with 0.1, 1 or 10 mM NO3+ in the presence of 0, 1 or 10 mM NH4+, Exogenous NH4+ partially inhibited the induction of NRA when roots were exposed to 0.1 mM, but not to 1 or 10 mM NO3+, In contrast, the induction of NiRA was inhibited by NH4+ at all NO3+ levels. Maximum inhibition of the enzyme activities occurred at 1.0 mM NH4+ Pre-treatment with NH4+ had no effect on the subsequent induction of NRA in the absence of additional NH4+ whereas the induction of NiRA in NH4+-pretreated roots was inhibited in the absence of NH4+ At 10 mM NO3+ L-methionine sulfoximine stimulated the induction of NRA whether or not exogenous NH4+ was present. In contrast, the induction of NiRA was inhibited by L-methionine sulfoximine irrespective of NH4+ supply. During the postinduction phase, exogenous NH4+ decreased NRA in roots supplied with 0.1 mM but not with 1mM NH3+ whereas, NiRA was unaffected by NH4+ at either substrate concentration. The results indicate that exogenous NH4+ regulates the induction of NRA in roots by limiting the availability of NO3+. Conversely, it has a direct effect, independent of the availability of NO3+, on the induction of NiRA. The lack of an NH4+ effect on NiRA during the postinduction phase is apparently due to a slower turnover rate of that enzyme.  相似文献   

10.
In the atmosphere, ammonia (NH3) is the third most abundant N species which, due to various natural and anthropogenic sources, can locally reach high concentrations. The acquisition of atmospheric NH3 by plant shoots will lead to two opposing effects on acid-base balance. Absorption and dissolution of NH3 will cause an alkalinisation, while the assimilation of NH3 results in an acidification. Different rates of these processes would lead to an acid-base imbalance with consequences for the ionic balance of the plant. As there is only a limited capacity for biochemical disposal of excess H+ in shoots, pH regulation may involve a pattern of (in)organic ion flow between shoots and roots followed by H+/OH? extrusion into the media via roots. The acquisition of NH3 as additional N source should lead to a reduction in the ratio of mol H+/OH? gained per mol N assimilated. We have recently investigated the NH3 acquisition by Lolium perenne L. cv. Centurion and studied the effects of gas phase NH3 on growth, acid-base balance and water-use efficiency. The experiments, therefore, included the application of a range of 14NH3 to the shoots and of 15N as NO3?, NH4+ or NH4NO3 to the roots. After a summary of the main conclusions from those experiments, we discuss the implications of the use of atmospheric NH3 for the mineral composition of the plants. Over the range of NH3 supplied, plants from all treatments could utilize gas-phase NH3. Plants receiving NO3? via their roots had a higher capacity to use gaseous NH3 than those growing with NH4+. NH3 assimilation in shoots reduced both the acid load with NH4+ nutrition and the alkaline load with NO3? supply to the roots. The most significant effect of fumigation on the ion balance was an increase in K+ within all treatments, and this effect was highest in the NH4+-fed plants. The results of the experiments support predictions of a combination of neutralizing biochemical reactions as well as transport of organic anion salts between shoots and roots as possible acid-base regulation mechanisms of the whole plant.  相似文献   

11.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

12.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   

13.
Ricinus communis L. plants were grown in nutrient solutions in which N was supplied as NO3 or NH4+, the solutions being maintained at pH 5.5. In NO3-fed plants excess nutrient anion over cation uptake was equivalent to net OH efflux, and the total charge from NO3 and SO42− reduction equated to the sum of organic anion accumulation plus net OH efflux. In NH4+-fed plants a large H+ efflux was recorded in close agreement with excess cation over anion uptake. This H+ efflux equated to the sum of net cation (NH4+ minus SO42−) assimilation plus organic anion accumulation. In vivo nitrate reductase assays revealed that the roots may have the capacity to reduce just under half of the total NO3 that is taken up and reduced in NO3-fed plants. Organic anion concentration in these plants was much higher in the shoots than in the roots. In NH4+-fed plants absorbed NH4+ was almost exclusively assimilated in the roots. These plants were considerably lower in organic anions than NO3-fed plants, but had equal concentrations in shoots and roots. Xylem and phloem saps were collected from plants exposed to both N sources and analyzed for all major contributing ionic and nitrogenous compounds. The results obtained were used to assist in interpreting the ion uptake, assimilation, and accumulation data in terms of shoot/root pH regulation and cycling of nutrients.  相似文献   

14.
Variations in the inorganic and organic composition of xylem exudate, growth and N content under contrasting forms of N supply in three cucumber cultivars (Hyclos, Medusa and Victory) were studied in glasshouse conditions. The plants were grown hydroponically with two NO3 -:NH4 + ratios (100:0 and 60:40).The xylem sap of Medusa grown with both N sources displayed an increase of organic N and carboxylate concentrations and a decrease of cations, inorganic anions and carbohydrates compared with that of those grown with NO3 - alone, showing a higher growth and N content in tissues and thus better utilization of N supplied as NO3 - and NH4 +. Mixed N nutrition in Hyclos caused the greatest amounts of NO3 - and NH4 + in xylem sap, lower root weight and N levels in the leaves, while its root was unable to generate an adequate supply of organic N compounds. Despite the levels of cations, inorganic and organic anions were reduced by the NH4 + supplied to Victory, the ionic balance in the xylem sap, growth and N content remained similar to that of those supplied with NO3 - alone. Finally, the cucumber cultivars studied here, responded differently to the form of N supplied, it may partly be due to their ability of assimilating N in the roots and partly to the form in which the N is translocated to the shoot.  相似文献   

15.
Poplar plants are cultivated as woody crops, which are often fertilized by addition of ammonium (NH4 +) and/or nitrate (NO3 ?) to improve yields. However, little is known about net NH4 +/NO3 ? fluxes and their relation with H+ fluxes in poplar roots. In this study, net NH4 +/NO3 ? fluxes in association with H+ fluxes were measured non-invasively using scanning ion-selective electrode technique in fine roots of Populus popularis. Spatial variability of NH4 + and NO3 ? fluxes was found along root tips of P. popularis. The maximal net uptake of NH4 + and NO3 ? occurred, respectively, at 10 and 15 mm from poplar root tips. Net NH4 + uptake was induced by ca. 48 % with provision of NO3 ? together, but net NO3 ? uptake was inhibited by ca. 39 % with the presence of NH4 + in poplar roots. Furthermore, inactivation of plasma membrane (PM) H+-ATPases by orthovanadate markedly inhibited net NH4 +/NO3 ? uptake and even led to net NH4 + release with NO3 ? co-provision. Linear correlations were observed between net NH4 +/NO3 ? and H+ fluxes in poplar roots except that no correlation was found between net NH4 + and H+ fluxes in roots exposed to NH4Cl and 0 mM vanadate. These results indicate that root tips play a key role in NH4 +/NO3 ? uptake and that net NH4 +/NO3 ? fluxes and the interaction of net fluxes of both ions are tightly associated with H+ fluxes in poplar roots.  相似文献   

16.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
InMucuna pruriens var.utilis, grown with nitrate-N in a hydroponic split-root system, an Al avoidance reaction of root growth was observed, which was ascribed to local P stress in the Al containing compartment. The Al avoidance reaction was similar to the avoidance ofMucuna roots of acid subsoil in the field where roots grew preferentially in the topsoil. In the present paper the effect of different N forms (NO3 and NH4 +) on the reactions ofMucuna to Al were studied, since in acid soils N is present as a mixture of NO3 and NH4 +. No interaction between the N form and Al toxicity was found. A hydroponic split-root experiment with NH4NO3 nutrition, which is comparable to the situation in the field, showed that under these conditions Al avoidance did not occur. It is concluded that a relation between the Al avoidance reaction ofMucuna and P stress is still likely.Abbreviations Dr root diameter - Lpr total root length per plant - Lrw specific root length - NRA nitrate reductase activity - S/R shoot: root ratio  相似文献   

18.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   

19.
Cation exchange capacity and lead sorption in ectomycorrhizal fungi   总被引:7,自引:0,他引:7  
Two ectomycorrhizal fungi, Paxillus involutus 533 and Laccaria bicolor S238, differing greatly in their mycelial characteristics, were investigated with regard to their cation exchange capacity and Pb-binding capacity in vitro after growth with either NO3 - or NH4 + as N source. The CECs of 800–1200 mol g-1 dry weight for Paxillus involutus 533 and 2000–3000 mol g-1 dry weight for Laccaria bicolor S238, were high compared to plant roots. The fungal mycelium also had a high Pb sorption capacity. It was higher in Laccaria bicolor S238 than in Paxillus involutus 533 and higher after pregrowth in NO3 - compared to NH4 +. Both the higher CEC and the higher Pb sorption capacity of Laccaria bicolor S238 compared to Paxillus involutus 533 might have been the result of the hydrophilic nature of the of Laccaria bicolor S238 mycelium. It would have absorbed the solutions better than the hydrophobic mycelium of Paxillus involutus 533. X-ray microanalysis of the cell walls revealed that the Pb content of the cell walls was higher in Paxillus involutus 533 than in Laccaria bicolor S238. Nevertheless, electron dense deposits in the cell walls of Laccaria bicolor S238 contained large amounts of Pb, P and S. Thus, while Pb was evenly distributed in the cell walls of Paxillus involutus 533, Pb was accumulated in electron dense deposits in Laccaria bicolor S238. The results are discussed in view of their significance for the mycorrhizal symbiosis.  相似文献   

20.

Aim

Our objectives were to compare effects of root charge properties on Al adsorption by the roots of rice that differed in Al-tolerance, and to examine effects of different nitrogen forms on charge properties of rice roots and Al adsorption.

Methods

Streaming potential and chemical methods were used to measure root zeta potential and investigate Al chemical forms adsorbed on the roots of rice obtained from solution culture experiments.

Results

Rice roots of the Al-sensitive variety Yangdao-6 carried greater negative charge than the Al-tolerant variety Wuyunjing-7, which meant the roots of Yangdao-6 adsorbed more exchangeable and complexed Al. When both rice varieties were grown in NH4 +-containing nutrient solutions, there were less functional groups and lower negative surface charge on their roots, which reduced Al adsorption compared to the rice grown in NO3 ? containing nutrient solutions. The decline in nutrient solution pH due to NH4 + uptake by rice roots was responsible for the reduced numbers of functional groups and the lower negative surface charge on the roots compared to the rice grown in NO3 ? containing solutions.

Conclusions

Integrated root surface charge, as expressed by zeta potential, played an important role in Al adsorption by the roots of rice with different Al-tolerance.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号