首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we calculated a consensus amino acid sequence from 13 homologous fungal phytases. A synthetic gene was constructed and recombinantly expressed. Surprisingly, consensus phytase-1 was 15-26 degrees C more thermostable than all parent phytases used in its design [Lehmann et al. (2000)Protein Eng., 13, 49-57]. In the present study, inclusion of six further phytase sequences in the amino acid sequence alignment resulted in the replacement of 38 amino acid residues in either one or both of the new consensus phytases-10 and -11. Since consensus phytase-10, again, was 7.4 degrees C more thermostable than consensus phytase-1, the thermostability effects of most of the 38 amino acid substitutions were tested by site-directed mutagenesis. Both stabilizing and destabilizing mutations were identified, but all affected the stability of the enzyme by <3 degrees C. The combination of all stabilizing amino acid exchanges in a multiple mutant of consensus phytase-1 increased the unfolding temperature from 78.0 to 88.5 degrees C. Likewise, back-mutation of four destabilizing amino acids and introduction of an additional stabilizing amino acid in consensus phytase-10 further increased the unfolding temperature from 85.4 to 90.4 degrees C. The thermostabilization achieved is the result of a combination of slight improvements from multiple amino acid exchanges rather than being the effect of a single or of just a few dominating mutations that have been introduced by chance. The present findings support the general validity of the consensus concept for thermostability engineering of proteins.  相似文献   

2.
The consensus concept for thermostability engineering of proteins   总被引:16,自引:0,他引:16  
Previously, sequence comparisons between a mesophilic enzyme and a more thermostable homologue were shown to be a feasible approach to successfully predict thermostabilizing amino acid substitutions. The 'consensus approach' described in the present paper shows that even a set of amino acid sequences of homologous, mesophilic enzymes contains sufficient information to allow rapid design of a thermostabilized, fully functional variant of this family of enzymes. A sequence alignment of homologous fungal phytases was used to calculate a consensus phytase amino acid sequence. Upon construction of the synthetic gene, recombinant expression and purification, the first phytase obtained, termed consensus phytase-1, displayed an unfolding temperature (T(m)) of 78.0 degrees C which is 15-22 degrees C higher than the T(m) values of all parent phytases used in its design. Refinement of the approach, combined with site-directed mutagenesis experiments, yielded optimized consensus phytases with T(m) values of up to 90.4 degrees C. These increases in T(m) are due to the combination of multiple amino acid exchanges which are distributed over the entire sequence of the protein and mainly affect surface-exposed residues; each individual substitution has a rather small thermostabilizing effect only. Remarkably, in spite of the pronounced increase in thermostability, catalytic activity at 37 degrees C is not compromised. Thus, the design of consensus proteins is a potentially powerful and novel alternative to directed evolution and to a series of rational approaches for thermostability engineering of enzymes and other proteins.  相似文献   

3.
Naturally-occurring phytases having the required level of thermostability for application in animal feeding have not been found in nature thus far. We decided to de novo construct consensus phytases using primary protein sequence comparisons. A consensus enzyme based on 13 fungal phytase sequences had normal catalytic properties, but showed an unexpected 15-22 degrees C increase in unfolding temperature compared with each of its parents. As a first step towards understanding the molecular basis of increased heat resistance, the crystal structure of consensus phytase was determined and compared with that of Aspergillus niger phytase. Aspergillus niger phytase unfolds at much lower temperatures. In most cases, consensus residues were indeed expected, based on comparisons of both three-dimensional structures, to contribute more to phytase stabilization than non-consensus amino acids. For some consensus amino acids, predicted by structural comparisons to destabilize the protein, mutational analysis was performed. Interestingly, these consensus residues in fact increased the unfolding temperature of the consensus phytase. In summary, for fungal phytases apparently an unexpected direct link between protein sequence conservation and protein stability exists.  相似文献   

4.
PhyA gene products of Aspergillus ficuum (AF) and Peniophora lycii (PL) as expressed in industrial strains of Aspergillus niger and Aspergillus oryzae, respectively, were purified to homogeneity and then characterized for both physical and biochemical properties. The PL phytase is 26 amino acid residues shorter than the AF phytase. Dynamic light scattering studies indicate that the active AF phytase is a monomer while the PL phytase is a dimer. While both of the phytases retained four identical glycosylatable Asn residues, unique glycosylation sites, six for PL and seven for AF phytase, were observed. Global alignment of both the phytases has shown 38% sequence homology between the two proteins. At 58 degrees C and pH 5.0, the PL phytase gave a specific activity of 22,000 nKat/mg as opposed to about 3000 nKat/mg for AF phytase. However, the AF phytase is more thermostable than its counterpart PL phytase at 65 degrees C. Also, AF phytase is more stable at pH 7.5 than the PL phytase. The two phytases differed in K(m) for phytate, K(i) for myo-inositol hexasulfate (MIHS), and pH optima profile. Despite similarities in the active site sequences, the two phytases show remarkable differences in turnover number, pH optima profile, stability at higher temperature, and alkaline pH. These biochemical differences indicate that phytases from ascomycete and basidiomycete fungi may have evolved to degrade phytate in different environments.  相似文献   

5.
Previously, we determined the DNA and amino acid sequences as well as biochemical and biophysical properties of a series of fungal phytases. The amino acid sequences displayed 49-68% identity between species, and the catalytic properties differed widely in terms of specific activity, substrate specificity, and pH optima. With the ultimate goal to combine the most favorable properties of all phytases in a single protein, we attempted, in the present investigation, to increase the specific activity of Aspergillus fumigatus phytase. The crystal structure of Aspergillus niger NRRL 3135 phytase known at 2.5 A resolution served to specify all active site residues. A multiple amino acid sequence alignment was then used to identify nonconserved active site residues that might correlate with a given favorable property of interest. Using this approach, Gln27 of A. fumigatus phytase (amino acid numbering according to A. niger phytase) was identified as likely to be involved in substrate binding and/or release and, possibly, to be responsible for the considerably lower specific activity (26.5 vs. 196 U x [mg protein](-1) at pH 5.0) of A. fumigatus phytase when compared to Aspergillus terreus phytase, which has a Leu at the equivalent position. Site-directed mutagenesis of Gln27 of A. fumigatus phytase to Leu in fact increased the specific activity to 92.1 U x (mg protein)(-1), and this and other mutations at position 27 yielded an interesting array of pH activity profiles and substrate specificities. Analysis of computer models of enzyme-substrate complexes suggested that Gln27 of wild-type A. fumigatus phytase forms a hydrogen bond with the 6-phosphate group of myo-inositol hexakisphosphate, which is weakened or lost with the amino acid substitutions tested. If this hydrogen bond were indeed responsible for the differences in specific activity, this would suggest product release as the rate-limiting step of the A. fumigatus wild-type phytase reaction.  相似文献   

6.
Site-directed mutagenesis of a thermostable alkaline phytase from Bacillus sp. MD2 was performed with an aim to increase its specific activity and activity and stability in an acidic environment. The mutation sites are distributed on the catalytic surface of the enzyme (P257R, E180N, E229V and S283R) and in the active site (K77R, K179R and E227S). Selection of the residues was based on the idea that acid active phytases are more positively charged around their catalytic surfaces. Thus, a decrease in the content of negatively charged residues or an increase in the positive charges in the catalytic region of an alkaline phytase was assumed to influence the enzyme activity and stability at low pH. Moreover, widening of the substrate-binding pocket is expected to improve the hydrolysis of substrates that are not efficiently hydrolysed by wild type alkaline phytase. Analysis of the phytase variants revealed that E229V and S283R mutants increased the specific activity by about 19% and 13%, respectively. Mutation of the active site residues K77R and K179R led to severe reduction in the specific activity of the enzyme. Analysis of the phytase mutant-phytate complexes revealed increase in hydrogen bonding between the enzyme and the substrate, which might retard the release of the product, resulting in decreased activity. On the other hand, the double mutant (K77R-K179R) phytase showed higher stability at low pH (pH 2.6-3.0). The E227S variant was optimally active at pH 5.5 (in contrast to the wild type enzyme that had an optimum pH of 6) and it exhibited higher stability in acidic condition. This mutant phytase, displayed over 80% of its initial activity after 3 h incubation at pH 2.6 while the wild type phytase retained only about 40% of its original activity. Moreover, the relative activity of this mutant phytase on calcium phytate, sodium pyrophosphate and p-nitro phenyl phosphate was higher than that of the wild type phytase.  相似文献   

7.
Oh BC  Chang BS  Park KH  Ha NC  Kim HK  Oh BH  Oh TK 《Biochemistry》2001,40(32):9669-9676
The thermostable phytase from Bacillus amyloliquefaciens DS11 hydrolyzes phytate (myo-inositol hexakisphosphate, IP6) to less phosphorylated myo-inositol phosphates in the presence of Ca2+. In this report, we discuss the unique Ca2+-dependent catalytic properties of the phytase and its specific substrate requirement. Initial rate kinetic studies of the phytase indicate that the enzyme activity follows a rapid equilibrium ordered mechanism in which binding of Ca2+ to the active site is necessary for the essential activation of the enzyme. Ca2+ turned out to be also required for the substrate because the phytase is only able to hydrolyze the calcium-phytate complex. In fact, both an excess amount of free Ca2+ and an excess of free phytate, which is not complexed with each other, can act as competitive inhibitors. The Ca2+-dependent catalytic activity of the enzyme was further confirmed, and the critical amino acid residues for the binding of Ca2+ and substrate were identified by site-specific mutagenesis studies. Isothermal titration calorimetry (ITC) was used to understand if the decreased enzymatic activity was related to poor Ca2+ binding. The pH dependence of the Vmax and Vmax/Km consistently supported these observations by demonstrating that the enzyme activity is dependent on the ionization of amino acid residues that are important for the binding of Ca2+ and the substrate. The Ca2+-dependent activation of enzyme and substrate was found to be different from other histidine acid phytases that hydrolyze metal-free phytate.  相似文献   

8.
Two thermostable phytases were identified from Thai isolates of Aspergillus japonicus BCC18313 (TR86) and Aspergillus niger BCC18081 (TR170). Both genes of 1404 bp length, coding for putative phytases of 468 amino acid residues, were cloned and transferred into Pichia pastoris . The recombinant phytases, r-PhyA86 and r-PhyA170, were expressed as active extracellular, glycosylated proteins with activities of 140 and 100 U mL−1, respectively. Both recombinant phytases exhibited high affinity for phytate but not for p -nitrophenyl phosphate. Optimal phytase activity was observed at 50 °C and pH 5.5. High thermostability, which is partly dependent on glycosylation, was demonstrated for both enzymes, as >50% activity was retained after heating at 100 °C for 10 min. The recombinant phytases also exhibited broad pH stability from 2.0 to 8.0 and are resistant to pepsin. In vitro digestibility tests suggested that r-PhyA86 and r-PhyA170 are at least as efficient as commercial phytase for hydrolyzing phytate in corn-based animal feed and are therefore suitable sources of phytase supplement.  相似文献   

9.
An acid phosphatase with phytase activity, produced by Mucor hiemalis Wehmer, was purified to homogeneity by a combination of anion exchange, gel filtration and hydrophobic interaction chromatography. The monomeric, glycosylated enzyme displayed maximum activity at 55 degrees C and pH 5.0-5.5. When compared to commercialised products, the enzyme is more thermostable (80 degrees C, 5min), displays a broader pH versus activity profile and greater stability under simulated digestive tract conditions. Unlike commercial phytases, the Mucor enzyme should retain some activity in the small intestine as well as in the stomach, facilitating a longer duration of action and hence more extensive substrate hydrolysis. Substrate specificity studies and protein database similarity searching using mass spectrometry-derived sequence data indicate that the enzyme is an acid phosphatase with activity on phytate. Cocktails containing acid phosphatases in combination with true phytases have been shown to promote more extensive phytate degradation than do true phytases alone. This, coupled to the enzyme's functionally relevant physicochemical characteristics, suggests its likely suitability for inclusion in second generation phytase cocktails for application in animal feed.  相似文献   

10.
Alkaline phytases from Bacillus species, which hydrolyze phytate to less phosphorylated myo-inositols and inorganic phosphate, have great potential as additives to animal feed. The thermostability and neutral optimum pH of Bacillus phytase are attributed largely to the presence of calcium ions. Nonetheless, no report has demonstrated directly how the metal ions coordinate phytase and its substrate to facilitate the catalytic reaction. In this study, the interactions between a phytate analog (myo-inositol hexasulfate) and divalent metal ions in Bacillus subtilis phytase were revealed by the crystal structure at 1.25 Å resolution. We found all, except the first, sulfates on the substrate analog have direct or indirect interactions with amino acid residues in the enzyme active site. The structures also unraveled two active site-associated metal ions that were not explored in earlier studies. Significantly, one metal ion could be crucial to substrate binding. In addition, binding of the fourth sulfate of the substrate analog to the active site appears to be stronger than that of the others. These results indicate that alkaline phytase starts by cleaving the fourth phosphate, instead of the third or the sixth that were proposed earlier. Our high-resolution, structural representation of Bacillus phytase in complex with a substrate analog and divalent metal ions provides new insight into the catalytic mechanism of alkaline phytases in general.  相似文献   

11.
Increased phytase activity for Aspergillus niger NRRL 3135 phytaseA (phyA) at intermediate pH levels (3.0-5.0) was achieved by site-directed mutagenesis of its gene at amino acid residue 300. A single mutation, K300E, resulted in an increase of the hydrolysis of phytic acid of 56% and 19% at pH 4.0 and 5.0, respectively, at 37 degrees C. This amino acid residue has previously been identified as part of the substrate specificity site for phyA and a comparison of the amino acid sequences of other cloned fungal phytases indicated a correlation between a charged residue at this position and high specific activity for phytic acid hydrolysis. The substitution at this residue by either another basic (R), uncharged (T), or acidic amino acid (D) did not yield a recombinant enzyme with the same favorable properties. Therefore, we conclude that this residue is not only important for the catalytic function of phyA, but also essential for imparting a favorable pH environment for catalysis.  相似文献   

12.
The Bacillus subtilis strain VTT E-68013 was chosen for purification and characterization of its excreted phytase. Purified enzyme had maximal phytase activity at pH 7 and 55°C. Isolated enzyme required calcium for its activity and/or stability and was readily inhibited by EDTA. The enzyme proved to be highly specific since, of the substrates tested, only phytate, ADP, and ATP were hydrolyzed (100, 75, and 50% of the relative activity, respectively). The phytase gene (phyC) was cloned from the B. subtilis VTT E-68013 genomic library. The deduced amino acid sequence (383 residues) showed no homology to the sequences of other phytases nor to those of any known phosphatases. PhyC did not have the conserved RHGXRXP sequence found in the active site of known phytases, and therefore PhyC appears not to be a member of the phytase subfamily of histidine acid phosphatases but a novel enzyme having phytase activity. Due to its pH profile and optimum, it could be an interesting candidate for feed applications.  相似文献   

13.
14.
Two novel phytase genes belonging to the histidine acid phosphatase family were cloned from Yersinia rohdei and Y. pestis and expressed in Pichia pastoris. Both the recombinant phytases had high activity at pH 1.5-6.0 (optimum pH 4.5) with an optimum temperature of 55 degrees C. Compared with the major commercial phytases from Aspergillus niger, Escherichia coli, and a potential commercial phytase from Y. intermedia, the Y. rohdei phytase was more resistant to pepsin, retained more activity under gastric conditions, and released more inorganic phosphorus (two to ten times) from soybean meal under simulated gastric conditions. These superior properties suggest that the Y. rohdei phytase is an attractive additive to animal feed. Our study indicated that, in order to better hydrolyze the phytate and release more inorganic phosphorus in the gastric passage, phytase should have high activity and stability, simultaneously, at low pH and high protease concentration.  相似文献   

15.
The physical and chemical properties of six crude phytase preparations were compared. Four of these enzymes (Aspergillus A, Aspergillus R, Peniophora and Aspergillus T) were produced at commercial scale for the use as feed additives while the other two (E. coli and Bacillus) were produced at laboratory scale. The encoding genes of the enzymes were from different microbial origins (4 of fungal origin and 2 of bacterial origin, i.e., E. coli and Bacillus phytases). One of the fungal phytases (Aspergillus R) was expressed in transgenic rape. The enzymes were studied for their pH behaviour, temperature optimum and stability and resistance to protease inactivation. The phytases were found to exhibit different properties depending on source of the phytase gene and the production organism. The pH profiles of the enzymes showed that the fungal phytases had their pH optima ranging from 4.5 to 5.5. The bacterial E. coli phytase had also its pH optimum in the acidic range at pH 4.5 while the pH optimum for the Bacillus enzyme was identified at pH 7.0. Temperature optima were at 50 and 60°C for the fungal and bacterial phytases, respectively. The Bacillus phytase was more thermostable in aqueous solutions than all other enzymes. In pelleting experiments performed at 60, 70 and 80°C in the conditioner, Aspergillus A, Peniophora (measurement at pH 5.5) and E. coli phytases were more heat stable compared to other enzymes (Bacillus enzyme was not included). At a temperature of 70°C in the conditioner, these enzymes maintained a residual activity of approximately 70% after pelleting compared to approximately 30% determined for the other enzymes. Incubation of enzyme preparations with porcine proteases revealed that only E. coli phytase was insensitive against pepsin and pancreatin. Incubation of the enzymes in digesta supernatants from various segments of the digestive tract of hens revealed that digesta from stomach inactivated the enzymes most efficiently except E. coli phytase which had a residual activity of 93% after 60 min incubation at 40°C. It can be concluded that phytases of various microbial origins behave differently with respect to their in vitro properties which could be of importance for future developments of phytase preparations. Especially bacterial phytases contain properties like high temperature stability (Bacillus phytase) and high proteolytic stability (E. coli phytase) which make them favourable for future applications as feed additives.  相似文献   

16.
17.
Aspergillus niger NCIM 563 produces dissimilar phytase isozymes under solid state and submerged fermentation conditions. Biochemical characterization and applications of phytase Phy III and Phy IV in SSF and their comparison with submerged fermentation Phy I and Phy III were studied. SSF phytases have a higher metabolic potential as compared to SmF. Phy I is tetramer and Phy II, III and IV are monomers. Phy I and IV have pH optima of 2.5 and Phy II and III have pH optima of 5.0 and 5.6, respectively. Phy I, III and IV exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. SSF phytase is less thermostable as compared to SmF phytase. Phy I and II show homology with other known phytases while Phy III and IV show no homology with SmF phytases and any other known phytases from the literature suggesting their unique nature. This is the first report about differences among phytase produced under SSF and SmF by A. niger and this study provides basis for explanation of the stability and catalytic differences observed for these enzymes. Exclusive biochemical characteristics and multilevel application of SSF native phytases determine their efficacy and is exceptional.  相似文献   

18.
The gene for Aspergillus fumigatus phytase (phyA) was cloned and expressed in Pichia pastoris. The enzyme expressed was purified to near homogeneity using sequential ion-exchange chromatography and was characterized biochemically. Although A. fumigatus phytase shows 66.2% sequence homology with A. ficuum phytase, the most widely studied enzyme, the cloned phytase showed identical molecular weight and temperature optima profile to the benchmark phytase. The pH profile of activity and kinetic parameters, however, differed from A. ficuum phytase. The cloned enzyme contains the septapeptide RHGARYP motif, which is also identical to the active site motif of A. ficuum phytase. Chemical probing of the active site Arg residues using both cyclohexanedione and phenylglyoxal resulted in the inactivation of phytase. The cloned A. fumigatus phytase, however, was more resistant to phenylglyoxal-induced inactivation. Both cloned A. fumigatus and A. ficuum phytases were identically affected by cyclohexanedione. Both the thermal characterization data and kinetic parameters of cloned and expressed A. fumigatus phytase indicate that this biocatalyst is not superior to the benchmark enzyme. The sequence difference between A. fumigatus and A. ficuum phytase may explain why the former enzyme catalyzes poorly compared to the benchmark enzyme. In addition, differential sensitivity toward the Arg modifier, phenylglyoxal, indicates a different chemical environment at the active site for each of the phytases.  相似文献   

19.
Phytases catalyze the release of phosphate by stepwise hydrolysis of phytate, a major source of phosphate in cereal grains, legumes, and oilseeds. Phytase improves, as a feed supplement, the nutritional quality of phytate rich diets and eventually reduce environmental pollution. Recently, phytases from enterobacteriaceae family have attracted industrial interest due to their high specific activity (2500–4000 U/mg). However, only limited information is available concerning structural dynamics of this class of enzymes. In this study, 50 nanosecond molecular dynamics simulation was performed on two Escherichia coli phytase structures (closed and open active site loop) to investigate conformational dynamics of the active site loop. Cluster analysis and principal component analysis (PCA) reveal significant difference in the conformational dynamics of active site compared to reported crystal structure. Molecular dynamic studies indicated that the movement in the active site of E. coli phytase is mainly confined by the active site loop resulted in wider opening of the loop in absence of phytate. The molecular dynamics studies highlight the possible role of loop residues as prerequisite for highly active phytases. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 994–1002, 2010.  相似文献   

20.
Five sources of phytases were used to study their biochemical characteristics. Phytase E was from an original Escherichia coli (E. coli), phytase PI and PG from the transformed Pichia pastoris (P. pastoris) with phytase gene of E. coli, phytase B and R from Aspergillus niger (A. niger). The results showed that the relative phytase activities had no significant changes when temperature was below 60 °C (P>0.05), and then decreased significantly with temperature increasing (P<0.01). The fungal phytase with the phytase gene from A. niger had the higher thermostability than the bacterial phytase with the phytase gene from E. coli; i.e. at 70 °C, 27–58% of phytase activity (compared with 30 °C) was retained for the bacterial phytase, and 73–96% for the fungal phytase; at 90 °C, 20–47% was retained for the bacterial phytase, and 41–52% for the fungal phytase, especially for the most thermostable phytase R (P<0.01). The optimum pH ranges were 3.0–4.5 for the bacterial phytases and 5.0–5.5 for the fungal phytases (P<0.01). When pH levels were 1, 7 and 8, only 3–7% of phytase activity (compared with the maximum phytase activity at a pH point) was retained for both bacterial and fungal phytases. The amount of inorganic P released from soybean meal was significantly increased when the levels of phytase activity in the soybean meal increased from 0 to 1.0 U/g soybean meal (P<0.01), except for phytase PI. The maximum P released was obtained at 1 U/g soybean meal for all five kinds of phytases (P<0.01). The most economical phytase concentration for P released was 0.25 U/g for phytase PI and B, and 0.50–1.0 U/g for phytase PG, E and R. In addition, the linear and non-linear regression models were established to estimate phytase activity and its characteristics very easily and economically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号