首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A study was carried out to determine some of the factors that might distinguish transient from chronic hepadnavirus infection. First, to better characterize chronic infection, Pekin ducks, congenitally infected with the duck hepatitis B virus (DHBV), were used to assess age-dependent variations in viremia, percentage of DHBV-infected hepatocytes, and average levels of DNA replication intermediates in the cytoplasm and of covalently closed circular DNA in the nuclei of infected hepatocytes. Levels of viremia and viral DNA were found to peak at about the time of hatching but persisted at relatively constant levels in chronically infected birds up to 2 years of age. The percentage of infected hepatocytes was also constant, with DHBV replication in virtually 100% of hepatocytes in all birds. Next, we found that adolescent ducks inoculated intravenously with a large dose of DHBV also developed massive infection of hepatocytes with an early but low-level viremia, followed by rapid development of a neutralizing antibody response. No obvious quantitative or qualitative differences between transiently and chronically infected liver tissue were detected in the intracellular markers of viral replication examined. However, in the adolescent duck experiment, DHBV infection was rapidly cleared from the liver even when up to 80% of hepatocytes were initially infected. In all of these ducks, clearance of infection was accompanied by only a mild hepatitis, with no evidence that massive cell death contributed to the clearance. This finding suggested that mechanisms in addition to immune-mediated destruction of hepatocytes might make major contributions to clearance of infections, including physiological turnover of hepatocytes in the presence of a neutralizing antibody response and/or spontaneous loss of the capacity of hepatocytes to support virus replication.  相似文献   

3.
Treatment of hepatitis B virus carriers with the nucleoside analog lamivudine suppresses virus replication. However, rather than completely eliminating the virus, long-term treatment often ends in the outgrowth of drug-resistant variants. Using woodchucks chronically infected with woodchuck hepatitis virus (WHV), we investigated the consequences of combining lamivudine treatment with immunotherapy mediated by an adenovirus superinfection. Eight infected woodchucks were treated with lamivudine and four were infected with approximately 10(13) particles of an adenovirus type 5 vector expressing beta-galactosidase. Serum samples and liver biopsies collected following the combination therapy revealed a 10- to 20-fold reduction in DNA replication intermediates in three of four woodchucks at 2 weeks after adenovirus infection. At the same time, covalently closed circular DNA (cccDNA) and viral mRNA levels both declined about two- to threefold in those woodchucks, while mRNA levels for gamma interferon and tumor necrosis factor alpha as well as for the T-cell markers CD4 and CD8 were elevated about twofold. Recovery from adenovirus infection was marked by elevation of sorbitol dehydrogenase, a marker for hepatocyte necrosis, as well as an 8- to 10-fold increase in expression of proliferating cell nuclear antigen, a marker for DNA synthesis, indicating significant hepatocyte turnover. The fact that replicative DNA levels declined more than cccDNA and mRNA levels following adenovirus infection suggests that the former decline either was cytokine induced or reflects instability of replicative DNA in regenerating hepatocytes. Virus titers in all four woodchucks were only transiently suppressed, suggesting that the effect of combination therapy is transient and, at least under the conditions used, does not cure chronic WHV infections.  相似文献   

4.
It is well known that hepatitis B virus infections can be transient or chronic, but the basis for this dichotomy is not known. To gain insight into the mechanism responsible for the clearance of hepadnavirus infections, we have performed a molecular and histologic analysis of liver tissues obtained from transiently infected woodchucks during the critical phase of the recovery period. We found as expected that clearance from transient infections occurred subsequent to the appearance of CD4(+) and CD8(+) T cells and the production of interferon gamma and tumor necrosis factor alpha in the infected liver. These events were accompanied by a significant increase in apoptosis and regeneration of hepatocytes. Surprisingly, however, accumulation of virus-free hepatocytes was delayed for several weeks following this initial influx of lymphocytes. In addition, we observed that chronically infected animals can exhibit levels of T-cell accumulation, cytokine expression, and apoptosis that are comparable with those observed during the initial phase of transient infections. Our results are most consistent with a model for recovery predicting replacement of infected hepatocytes with regenerated cells, which by unknown mechanisms remain protected from reinfection in animals that can be cured.  相似文献   

5.
Woodchuck hepatitis virus (WHV) mutants with core internal deletions (CID) occur naturally in chronically WHV-infected woodchucks, as do hepatitis B virus mutants in humans. We studied the replication of WHV deletion mutants in primary woodchuck hepatocyte cultures and in vivo after transmission to naive woodchucks. By screening 14 wild-caught, chronically WHV-infected woodchucks, two woodchucks, WH69 and WH70, were found to harbor WHV CID mutants. Consistent with previous results, WHV CID mutants from both animals had deletions of variable lengths (90 to 135 bp) within the middle of the WHV core gene. In woodchuck WH69, WHV CID mutants represented a predominant fraction of the viral population in sera, normal liver tissues, and to a lesser extent, in liver tumor tissues. In primary hepatocytes of WH69, the replication of wild-type WHV and CID mutants was maintained at least for 7 days. Although WHV CID mutants were predominant in fractions of cellular WHV replicative intermediates, mutant covalently closed circular DNAs (cccDNAs) appeared to be a small part of cccDNA-enriched fractions. Analysis of cccDNA-enriched fractions from liver tissues of other woodchucks confirmed that mutant cccDNA represents only a small fraction of the total cccDNA pool. Four naive woodchucks were inoculated with sera from woodchuck WH69 or WH70 containing WHV CID mutants. All four woodchucks developed viremia after 3 to 4 weeks postinoculation (p.i.). They developed anti-WHV core antigen (WHcAg) antibody, lymphoproliferative response to WHcAg, and anti-WHV surface antigen. Only wild-type WHV, but no CID mutant, was found in sera from these woodchucks. The WHV CID mutant was also not identified in liver tissue from one woodchuck sacrificed in week 7 p.i. Three remaining woodchucks cleared WHV. Thus, the presence of WHV CID mutants in the inocula did not significantly change the course of acute self-limiting WHV infection. Our results indicate that the replication of WHV CID mutants might require some specific selective conditions. Further investigations on WHV CID mutants will allow us to have more insight into hepadnavirus replication.  相似文献   

6.
Duck hepatitis B virus (DHBV) DNA synthesis in congenitally infected ducks is inhibited by 2'-deoxycarbocyclic guanosine (2'-CDG). Three months of therapy reduces the number of infected hepatocytes at least 10-fold (W.S. Mason, J. Cullen, J. Saputelli, T.-T. Wu, C. Liu, W.T. London, E. Lustbader, P. Schaffer, A.P. O'Connell, I. Fourel, C.E. Aldrich, and A.R. Jilbert, Hepatology 19:393-411, 1994). The present study was performed to determine the kinetics of disappearance of infected hepatocytes and to evaluate the role of hepatocyte turnover in this process. Essentially all hepatocytes were infected before drug therapy. Oral treatment with 2'-CDG resulted in a prompt reduction in the number of infected hepatocytes. After 2 weeks, only 30 to 50% appeared to still be infected, and less than 10% were detectably infected after 5 weeks of therapy. To assess the possible role of hepatocyte turnover in these changes, 5-bromo-2'-deoxyuridine (BUdR) was administered 8 h before liver biopsy to label host DNA in hepatocytes passing through S phase, and stained nuclei were detected in tissue sections by using an antibody reactive to BUdR. The extent of nuclear labeling after 5 weeks was the same as that before therapy (ca. 1%). However, biopsies taken after 2 weeks of therapy showed a ca. 10-fold elevation in the number of nuclei labeled with BUdR. This result suggested that a rapid clearance of infected hepatocytes by 2'-CDG was caused not just by the inhibition of viral replication but also by an acceleration of the rate of hepatocyte turnover. To test this possibility further, antiviral therapy was carried out with another strong inhibitor of DHBV DNA synthesis, 5-fluoro-2',3'-dideoxy-3'-thiacytidine (524W), which did not accelerate hepatocyte turnover in ducks. 524W administration led to a strong inhibition of virus production but to a slower rate of decline in the number of infected hepatocytes, so that ca. 50% (and perhaps more) were still infected after 3 months of therapy. In addition, histopathologic evaluation of 2'-CDG-treated ducks revealed liver injury, especially at the start of therapy. No liver damage was observed during 524W therapy. These results imply that clearance of infected hepatocytes from the liver is correlated with hepatocyte turnover. Thus, in the absence of immune clearance or other sources for the accelerated elimination of infected hepatocytes, inhibitors of virus replication would have to be administered for a long period to substantially reduce the burden of infected hepatocytes in the liver.  相似文献   

7.
Woodchuck hepatitis virus (WHV) is an established model for human hepatitis B virus. The kinetics of virus and host responses in serum and liver during acute, self-limited WHV infection in adult woodchucks were studied. Serum WHV DNA and surface antigen (WHsAg) were detected as early as 1 to 3 weeks following experimental infection and peaked between 1 and 5 weeks postinfection. Thereafter, serum WHsAg levels declined rapidly and became undetectable, while WHV DNA levels became undetectable much later, between 4 and 20 weeks postinfection. Decreasing viremia correlated with transient liver injury marked by an increase in serum sorbitol dehydrogenase (SDH) levels. Clearance of WHV DNA from serum was associated with the normalization of serum SDH. Circulating immune complexes (CICs) of WHsAg and antibodies against WHsAg (anti-WHs) that correlated temporarily with the peaks in serum viremia and WHs antigenemia were detected. CICs were no longer detected in serum once free anti-WHs became detectable. The detection of CICs around the peak in serum viremia and WHs antigenemia in resolving woodchucks suggests a critical role for the humoral immune response against WHsAg in the early elimination of viral and subviral particles from the peripheral blood. Individual kinetic variation during WHV infections in resolving woodchucks infected with the same WHV inoculum and dose is likely due to the outbred nature of the animals, indicating that the onset and magnitude of the individual immune response determine the intensity of virus inhibition and the timing of virus elimination from serum.  相似文献   

8.
9.
The woodchuck hepatitis virus is a naturally occurring hepatitis B-like virus that infects the eastern woodchuck. Direct immunofluorescence staining for woodchuck hepatitis virus core antigen in liver biopsies demonstrated the presence of this antigen in 14 of 17 chronically infected woodchucks, and in 8 of 10 woodchucks undergoing acute infections. Fluorescent localization of woodchuck hepatitis virus core antigen was typically cytoplasmic, and this was confirmed further by electron microscopy. Experimental infection with woodchuck hepatitis virus was achieved in four of four woodchucks inoculated with serum from chronic carrier woodchucks. All infected animals developed a self-limited disease characterized by seroconversion to antibodies against the major viral antigens (core and surface antigens); naturally acquired acute infection demonstrated a similar course. A chimpanzee seronegative for all markers of hepatitis B virus developed a subclinical infection after inoculation with woodchuck hepatitis virus.  相似文献   

10.
Hepatitis B virus (HBV) frequently causes transient infections in adults but chronic infections in infants. The basis of these age-related outcomes is not known. Infection of ducks with duck hepatitis B virus (DHBV) displays a similar dependence of outcome on the age of the host at the time of infection. In this study we compared the infection of ducks at 3 days and 3 weeks of age. We found that the efficiency of infection of hepatocytes by virus in the inoculum was similar between the two age groups but that spread of the infection throughout the liver was severely inhibited in the 3-week-old-old ducks, while a rapid spread of the infection was observed in 3-day-old ducklings. Inhibition of virus spread was accompanied by the appearance in the serum of virus neutralizing activity, as assayed by blocking of infection of primary hepatocyte cultures. Neutralizing activity appeared as early as 1 or 2 days postinfection and increased during the next 2 weeks. Depletion of immunoglobulins from serum eliminated the neutralizing activity. The specific depletion of IgM indicated that IgM appeared as the dominant fraction of neutralizing antibody in the first 2 days postinfection, but declined from day 3 on while IgG antibody rose. We conclude that excess neutralizing antibody arising rapidly in birds inoculated at 3 weeks of age but not in newly hatched ducks prevented secondary cycles of infection, resulting in a limited infection in the liver and contributing to the eventual transient outcome of the infection.  相似文献   

11.
Intracerebral inoculation with mouse hepatitis virus strain A59 results in viral replication in the CNS and liver. To investigate whether B cells are important for controlling mouse hepatitis virus strain A59 infection, we infected muMT mice who lack membrane-bound IgM and therefore mature B lymphocytes. Infectious virus peaked and was cleared from the livers of muMT and wild-type mice. However, while virus was cleared from the CNS of wild-type mice, virus persisted in the CNS of muMT mice. To determine how B cells mediate viral clearance, we first assessed CD4(+) T cell activation in the absence of B cells as APC. CD4(+) T cells express wild-type levels of CD69 after infection in muMT mice. IFN-gamma production in response to viral Ag in muMT mice was also normal during acute infection, but was decreased 31 days postinfection compared with that in wild-type mice. The role of Ab in viral clearance was also assessed. In wild-type mice plasma cells appeared in the CNS around the time that virus is cleared. The muMT mice that received A59-specific Ab had decreased virus, while mice with B cells deficient in Ab secretion did not clear virus from the CNS. Viral persistence was not detected in FcR or complement knockout mice. These data suggest that clearance of infectious mouse hepatitis virus strain A59 from the CNS requires Ab production and perhaps B cell support of T cells; however, virus is cleared from the liver without the involvement of Abs or B cells.  相似文献   

12.
A number of naturally occurring hepatitis B virus mutants that cannot synthesize the virus precore protein have been identified. Such mutants have been associated with more severe forms of hepatitis, including fulminant hepatitis. The most common mutation observed is a substitution of G to A in the distal precore gene that converts a codon specifying Trp (TGG) to a termination codon (TAG). Using oligonucleotide-directed mutagenesis, we have produced the same point mutation in the precore gene of an infectious clone of woodchuck hepatitis virus (WHV). Transfection of mutant WHV DNA into the livers of adult woodchucks resulted in replication of the mutant in three of three susceptible animals. Levels of virus replication and transient elevations in liver enzymes in serum were similar to those of adult animals infected with wild-type WHV. Virions, found to possess mutant precore genes by polymerase chain reaction amplification and DNA sequencing, were recovered from the serum of one of the animals and inoculated subcutaneously into neonatal woodchucks. They produced infection in all five animals studied. The level of virus replication in neonatal animals infected with this mutant virus was comparable to that found in neonatal woodchucks infected with wild-type WHV, but none of five woodchucks infected with the precore mutant virus as neonates became chronic virus carriers. It was concluded that the precore gene of the WHV genome is not essential for virus replication in the natural host but may be important for chronic infection.  相似文献   

13.
Human hepatitis delta virus (HDV), obtained from the serum of an experimentally infected woodchuck, was injected into either the peritoneal cavity or the tail vein of both adult CB17 mice and mice with a severe combined immunodeficiency (CB17-scid mice). Three lines of evidence indicated that the virus was able to reach the liver and infect hepatocytes: (i) the amount of HDV genomic RNA detected in the liver by Northern (RNA) analysis increased during the first 5 to 10 days postinoculation, reaching a peak that was about threefold the amount in the original inoculum; (ii) also detected in the liver was the viral antigenomic RNA, which is complementary to the genomic RNA found in virions, and is diagnostic for virus replication; and (iii) by immunoperoxidase staining of liver sections, the delta antigen was detected in the nuclei of scattered cells identifiable as hepatocytes. In all of the mice, clearance of the infection occurred between 10 and 20 days after inoculation. The half-life for clearance was about 3 days in CB17-scid mice, indicating that clearance of infection did not involve a T- and B-cell-dependent immune response. Cell-to-cell spread of the initial infection was not detected. One possible interpretation of our results is that HDV infection of hepatocytes is directly cytopathic. Also, the results imply that chronic infection of the liver in humans may require continuous spread of virus within the liver. Alternatively, HDV in the absence of helper virus may be unable to cause a chronic infection of hepatocytes in vivo.  相似文献   

14.
Hepatitis C virus replication in mice with chimeric human livers   总被引:44,自引:0,他引:44  
Lack of a small animal model of the human hepatitis C virus (HCV) has impeded development of antiviral therapies against this epidemic infection. By transplanting normal human hepatocytes into SCID mice carrying a plasminogen activator transgene (Alb-uPA), we generated mice with chimeric human livers. Homozygosity of Alb-uPA was associated with significantly higher levels of human hepatocyte engraftment, and these mice developed prolonged HCV infections with high viral titers after inoculation with infected human serum. Initial increases in total viral load were up to 1950-fold, with replication confirmed by detection of negative-strand viral RNA in transplanted livers. HCV viral proteins were localized to human hepatocyte nodules, and infection was serially passaged through three generations of mice confirming both synthesis and release of infectious viral particles. These chimeric mice represent the first murine model suitable for studying the human hepatitis C virus in vivo.  相似文献   

15.
Hepatitis delta virus (HDV) is a subviral agent of humans which is dependent upon hepatitis B virus as a helper for transmission. HDV can be experimentally transmitted to woodchucks by using woodchuck hepatitis virus (WHV) as the helper. We used this model system to study two types of HDV infections: those of animals already chronically infected with WHV and those of animals without any evidence of prior exposure to WHV. At 5 to 10 days after infection with HDV, liver biopsies of these two groups of animals indicated that around 1% of the hepatocytes were infected (HDV antigen positive). Moreover, similar amounts of replicative forms of HDV RNA were detected. In contrast, by 20 days postinfection, the two groups of animals were quite different in the extent of the HDV infection. The animals chronically infected with WHV showed spread of the infection within the liver and the release of high titers of HDV into the serum. In contrast, the animals not previously exposed to WHV showed a progressive reduction in liver involvement, and at no time up to 165 days postinfection could we detect HDV particles in the serum. However, if these animals were inoculated with a relatively high titer of WHV at either 7 or even 33 days after the HDV infection, HDV viremia was observed. Our data support the interpretation that in these animals, hepatocytes were initially infected in the absence of helper virus, HDV genome replication took place, and ultimately these replicating genomes were rescued by the secondary WHV infection. The observation that HDV can survive in the liver for at least 33 days in the absence of coinfecting helper virus may be relevant to the reemergence of HDV infection following liver transplantation.  相似文献   

16.
Duck hepatitis B virus (DHBV) obtained from the serum of congenitally infected ducks was used to infect primary duck hepatocyte cultures 1 to 4 days after plating. Virus replication was demonstrated by the appearance, beginning at 2 days after infection, of intracellular covalently closed-circular and single-stranded DHBV DNA replicative intermediates which were not present in the inoculating virus preparation. With increasing time after infection there was further amplification of intracellular relaxed circular, covalently closed-circular, and single-stranded DHBV DNA. Cultures of primary duck hepatocytes are competent for infection with DHBV only during the first 4 days of culture. Synthesis of DHBV core antigen and DHBV surface antigen was detected by immunofluorescence in 10% of the hepatocytes in culture. De novo synthesis and release of infectious virus was also demonstrated. Therefore, all stages of viral replication were carried out by these experimentally infected primary hepatocyte cultures. This system makes it possible to study DHBV replication in vitro.  相似文献   

17.
Immunosuppression is known to influence the state of chronic hepatitis B virus infection, and is thought to increase the risk of developing chronic infection in newly exposed individuals. Cyclosporin A (CsA), an immunosuppressive agent that inhibits Th cell function, was administered to woodchucks chronically infected with woodchuck hepatitis virus (WHV), and resulted in a decreased severity of chronic hepatitis and an increased viremia during the treatment. Adult woodchucks inoculated with WHV and given CsA for 14 wk had increased viremias, decreased acute phase liver injury, and developed chronic infections at a higher rate compared with immunocompetent woodchucks given virus alone (chronicity in seven of seven WHV + CsA + vs zero of nine WHV + CsA-; p less than 0.001). These results in a relevant animal model of hepatitis B virus infection indicate: 1) that liver injury in acute hepadnavirus infections is immune-mediated and not a direct cytopathic effect of virus replication; 2) that Th cells function in the inflammatory response and in the immunologic control of hepadnavirus infection; and 3) that suppression of Th cell function in acute hepadnavirus infection decreases liver injury but alters the outcome of infection in favor of chronicity. These results also suggest continued challenges in the application of CsA in liver transplantation for hepatitis B virus-induced diseases.  相似文献   

18.
19.
Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.  相似文献   

20.
To test the hypothesis that in vivo resistance to hepadnavirus infection was due to resistance of host hepatocytes, we isolated hepatocytes from Muscovy ducklings and chickens, birds that have been shown to be resistant to duck hepatitis B virus (DHBV) infection, and attempted to infect them in vitro with virus from congenitally infected Pekin ducks. Chicken hepatocytes were resistant to infection, but we were able to infect approximately 1% of Muscovy duck hepatocytes in culture. Infection requires prolonged incubation with virus at 37 degrees C. Virus spread occurs in the Muscovy cultures, resulting in 5 to 10% DHBV-infected hepatocytes by 3 weeks after infection. The relatively low rate of accumulation of DHBV DNA in infected Muscovy hepatocyte cultures is most likely due to inefficient spread of virus infection; in the absence of virus spread, the rates of DHBV replication in Pekin and Muscovy hepatocyte cultures are similar. 5-Azacytidine treatment can induce susceptibility to DHBV infection in resistant primary Pekin hepatocytes but appears to have no similar effect in Muscovy cultures. The relatively inefficient infection of Muscovy duck hepatocytes that we have described may account for the absence of a detectable viremia in Muscovy ducklings experimentally infected with DHBV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号