共查询到20条相似文献,搜索用时 15 毫秒
1.
外来种入侵的过程、机理和预测 总被引:76,自引:8,他引:76
生物入侵是指某种生物从原来的分布区域扩展到一个新的(通常也是遥远的)地区,在新的区域里,其后代可以繁殖、扩散并持续维持下去,生物入侵成功的原因,即与入侵者本身的生物学,生态学特征有关,也与群落的脆弱性有关,入侵者可能较本地种的竞争能力强,更适应当地的环境,有的入侵者还可以改变环境,使之对已有利,而不利于本地种。缺乏天敌制约。群落的稳定性低和异常的环境扰动往往导致生物入侵,生物入侵的预测包括哪一种外来种会变成入侵种?哪些生态系统区域会被入侵?影响程度如何?入侵种的扩散态势如何等内容,对有关的理论和模型作了评介。 相似文献
2.
Exotic vascular plant invasiveness and forest invasibility in urban boreal forest types 总被引:1,自引:0,他引:1
The riverine forests of the northern city of Edmonton, Alberta, Canada display strong resilience to disturbance and are similar in species composition to southern boreal mixedwood forest types. This study addressed questions such as, how easily do exotic species become established in urban boreal forests (species invasiveness) and do urban boreal forest structural characteristics such as, native species richness, abundance, and vertical vegetation layers, confer resistance to exotic species establishment and spread (community invasibility)? Eighty-four forest stands were sampled and species composition and mean percent cover analyzed using ordination methods. Results showed that exotic tree/shrub types were of the most concern for invasion to urban boreal forests and that exotic species type, native habitat and propagule supply may be good indicators of invasive potential. Native forest structure appeared to confer a level of resistance to exotic species and medium to high disturbance intensity was associated with exotic species growth and spread without a corresponding loss in native species richness. Results provided large-scale evidence that diverse communities are less vulnerable to exotic species invasion, and that intermediate disturbance intensity supports species coexistence. From a management perspective, the retention of native species and native forest structure in urban forests is favored to minimize the impact of exotic species introductions, protect natural succession patterns, and minimize the spread of exotic species. 相似文献
3.
4.
Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities 总被引:1,自引:1,他引:0
Anthropogenic disturbance is considered a risk factor in the establishment of non‐indigenous species (NIS); however, few studies have investigated the role of anthropogenic disturbance in facilitating the establishment and spread of NIS in marine environments. A baseline survey of native and NIS was undertaken in conjunction with a manipulative experiment to determine the effect that heavy metal pollution had on the diversity and invasibility of marine hard‐substrate assemblages. The study was repeated at two sites in each of two harbours in New South Wales, Australia. The survey sampled a total of 47 sessile invertebrate taxa, of which 15 (32%) were identified as native, 19 (40%) as NIS, and 13 (28%) as cryptogenic. Increasing pollution exposure decreased native species diversity at all study sites by between 33% and 50%. In contrast, there was no significant change in the numbers of NIS. Percentage cover was used as a measure of spatial dominance, with increased pollution exposure leading to increased NIS dominance across all sites. At three of the four study sites, assemblages that had previously been dominated by natives changed to become either extensively dominated by NIS or equally occupied by native and NIS alike. No single native or NIS was repeatedly responsible for the observed changes in native species diversity or NIS dominance at all sites. Rather, the observed effects of pollution were driven by a diverse range of taxa and species. These findings have important implications for both the way we assess pollution impacts, and for the management of NIS. When monitoring the response of assemblages to pollution, it is not sufficient to simply assess changes in community diversity. Rather, it is important to distinguish native from NIS components since both are expected to respond differently. In order to successfully manage current NIS, we first need to address levels of pollution within recipient systems in an effort to bolster the resilience of native communities to invasion. 相似文献
5.
The study of invasiveness, the traits that enable a species to invade a habitat, and invasibility, the habitat characteristics that determine its susceptibility to the establishment and spread of an invasive species, provide a useful conceptual framework to formulate the biological invasion problem in a modelling context. Another important aspect is the complex interaction emerging among the invader species, the noninvader species already present in the habitat, and the habitat itself. Following a modelling approach to the biological invasion problem, we present a spatially explicit cellular automaton model (Interacting Multiple Cellular Automata (IMCA)). We use field parameters from the invader Gleditsia triacanthos and the native Lithraea ternifolia in montane forests of central Argentina as a case study to compare outputs and performance of different models. We use field parameters from another invader, Ligustrum lucidum, and the native Fagara coco from the same system to run the cellular automaton model. We compare model predictions with invasion values from aerial photographs. We discuss in detail the importance of factors affecting species invasiveness, and give some insights into habitat invasibility and the role of interactions between them. Finally, we discuss the relevance of mathematical modelling for studying and predicting biological invasions. The IMCA model provided a suitable context for integrating invasiveness, invasibility, and the interactions. In the invasion system studied, the presence of an invader's juvenile bank not only accelerated the rate of invasion but was essential to ensure invasion. Using the IMCA model, we were able to determine that not only adult survival but particularly longevity of the native species influenced the spread velocity of the invader, at least when a juvenile bank is present. Other factors determining velocity of invasion detected by the IMCA model were seed dispersal distance and age of reproductive maturity. We derived relationships between species' adult survival, fecundity and longevity of both theoretical and applied relevance for biological invasions. Invasion velocities calculated from the aerial photographs agreed well with predictions of the IMCA model. 相似文献
6.
近20年外来生物入侵危害与风险评估文献计量分析 总被引:3,自引:0,他引:3
外来生物入侵导致全球生物多样性下降,极大地威胁着生态系统健康,已造成很大的生态损失与经济损失。近年来,随着生物入侵的加剧,全球对生物入侵的研究力度不断加大。外来入侵生物的生态危害与风险评估可以为人们提供对入侵可能性和入侵方式更直接的信息,从而为管理者制定管理策略提供依据。基于最近20年间(1995—2014年)科学文献数据库Web of Science的科学引文索引数据库扩展版(SCI-E)中数据,对外来入侵生物的生态危害与风险评估方面的研究进行了文献计量分析,旨在了解当前国际研究现状,以便推动中国的生物入侵相关研究。为了全面掌握全球外来生物入侵生态危害与风险评估方面的研究,采用Bibexcel与TDA文献计量工具,对Web of Science数据库中相关文献进行了分析,去重后共获取5492篇文献。结果表明:近20年(1995—2014年)入侵生物的生态危害与风险评估方面的研究刊文量呈现前缓后剧增的趋势,2008—2014年进入了快速发展阶段,文献数量急剧增加,2014年达到最高(511篇);美国发文量远超其它国家,占据主导地位,中国刊文量排名第5。美国、澳大利亚、法国、英国、德国的研究论文影响力较大。刊文量最多的研究机构为美国农业部(USDA),中国科学院发文量排名第10位。研究学科主要为昆虫学、农艺学、植物科学、生态学,研究热点集中在生物防治、风险评估、粮食作物和经济作物的病虫害防治、杂草防控,以及生物入侵与气候变化的关系等方面。有关外来入侵生物的生态危害与风险评估的研究多集中于北美、澳大利亚和欧洲,未来要加强亚洲地区,特别是中国外来生物入侵风险评估的研究;要加强气候变化对外来生物物种特性的影响研究,更多关注入侵生物的生态控制与生态恢复方面的研究,以便更好地为今后长期有效地防控入侵生物提供理论与技术指导。 相似文献
7.
Abstract. The common waxbill Estrilda astrild was first introduced to Portugal from Africa in 1964, and has spread across much of the country and into Spain. We modelled the expansion of the common waxbill on a 20 × 20 km UTM grid in 4‐year periods from 1964 to 1999. The time variation of the square root of the occupied area shows that this expansion process is stabilizing in Portugal, and reasons for this are discussed. Several methods used to model biological expansions are not appropriate for the present case, because little quantitative data are available on the species ecology and because this expansion has been spatially heterogeneous. Instead, colonization on a grid was modelled as a function of several biophysical and spatio‐temporal variables through the fitting of a multivariate autologistic equation. This approach allows examination of the underlying factors affecting the colonization process. In the case of the common waxbill it was associated positively with its occurrence in adjacent cells, and affected negatively by altitude and higher levels of solar radiation. 相似文献
8.
Gisela C. Stotz James F. Cahill Jonathan A. Bennett Cameron N. Carlyle Edward W. Bork Diana Askarizadeh Sandor Bartha Carl Beierkuhnlein Bazartseren Boldgiv Leslie Brown Marcelo Cabido Giandiego Campetella Stefano Chelli Ofer Cohen Sandra Díaz Lucas Enrico David Ensing Batdelger Erdenetsetseg Alessandra Fidelis Heath W. Garris Hugh A. L. Henry Anke Jentsch Mohammad Hassan Jouri Kadri Koorem Peter Manning Randall Mitchell Mari Moora Gerhard E. Overbeck Jason Pither Kurt O. Reinhart Marcelo Sternberg Radnaakhand Tungalag Sainbileg Undrakhbold Margaretha van Rooyen Camilla Wellstein Martin Zobel Lauchlan H. Fraser 《Global Ecology and Biogeography》2020,29(3):482-490
9.
Olivier Chabrerie Kris Verheyen Robert Saguez Guillaume Decocq 《Diversity & distributions》2008,14(2):204-212
Whether non-native plant invasions are causes, consequences, or independent of the low species diversity in recipient ecosystems remains a debated question. We tried to test these three hypotheses in the special case of the American black cherry ( Prunus serotina Ehrh.), a gap-dependent tree species, which is invading European temperate forests. We compared plant communities, soil properties, and disturbance history between P. serotina -invaded and uninvaded paired-stands in a managed mixed forest. Relationships between invasion, disturbances, plant communities, and environmental conditions were investigated using redundancy analyses with variation partitioning. Several soil characteristics differed between paired stands, but were rather components of stand invasibility than invasion effects, except for topsoil available phosphorus. The disturbance history was similar among paired stands except for the amount of storm-induced tree falls, which correlated with the invader's density. Wild boar-disturbed soil areas were more important beneath P. serotina canopies, suggesting a positive feedback on its own establishment. Overall, species assemblages in invaded and uninvaded stands were similar; their ecological inconsistency suggested a management-sustained non-equilibrium. Habitat conditions and disturbances explained most of the variation in both plant diversity and P. serotina density, the last two factors exhibiting a weak direct association. We conclude that in managed forest ecosystems where plant communities are mainly driven by non-interactive factors and immigration processes, non-native plant species can naturalize without being directly influenced by measured features of the plant community in the receiving environment on the short term. 相似文献
10.
11.
Hunting and Plant Community Dynamics in Tropical Forests: A Synthesis and Future Directions 总被引:1,自引:0,他引:1
This synthesis builds on the preceding articles of this Special Section and has three goals. We first review the nascent literature that addresses indirect effects of hunting for tropical forest plant communities. Next, we highlight the potential indirect effects of hunting for other groups of organisms. Our final goal is to consider what could be done to ameliorate the demographic threats to harvest-sensitive game species caused by unsustainable hunting. Three conclusions are possible at this time concerning the impact of hunting for tropical forest plant communities: (1) Hunting tends to reduce seed movement for animal-dispersed species with very large diaspores; (2) Hunting reduces seed predation by granivorous vertebrates for species with large seeds; and (3) Hunting alters the species composition of the seedling and sapling layers. The cascading effects of hunting are already known to affect bruchid beetles and dung beetles and are likely to affect other, nongame taxa. To ameliorate these problems, several lines of research should be further explored to facilitate the development of game management plans including: (1) alternative use of sources of animal protein; (2) income supplementation for local people from sources other than wild meat; (3) outreach and extension activities for communities; (4) recognition and facilitation of the shifting of attitudes towards hunting; (5) implementation of community-based wildlife management programs in regulated-use areas such as extractive reserves; and (6) landscape-scale conservation planning that maximizes the source-sink dynamics of harvested and unharvested game populations and enforces game regulations in strictly protected areas. 相似文献
12.
Shrubland Restoration Following Woody Alien Invasion and Mining: Effects of Topsoil Depth, Seed Source, and Fertilizer Addition 总被引:6,自引:0,他引:6
Patricia M. Holmes 《Restoration Ecology》2001,9(1):71-84
Invasion by woody alien plants, construction, and mining operations are among the major disturbances degrading vegetation in the Cape Floristic Kingdom, South Africa. The aim of this study was to assess whether native fynbos shrubland vegetation could be restored following dense alien invasion and disturbance by mining. An area supporting dense alien trees was cleared and topsoil was stripped and stockpiled to simulate mining disturbance. A field trial investigated the effects of topsoil depth, seed mix application, and fertilizer on native species recruitment and vegetation development over a three‐year period. Soil‐stored seed banks contributed 60% of the species recruited, indicating that areas invaded for three decades have good restoration potential. The addition of a fynbos seed mix, which included serotinous overstory species, improved both the richness and structural composition of the vegetation. Most species sown in untopsoiled plots established, but survival and growth was low compared to topsoil plots. Poor growth in combination with a lack of soil seed bank species, indicate that restoring a diverse and functional cover of indigenous vegetation on subsoil is not possible in the short‐term. Soil amelioration is required to improve rooting conditions and initiate ecosystem processes. Shallow and deep topsoil treatments yielded high plant density, richness, and projected canopy cover, but canopy cover was higher in deep topsoil plots throughout the trial. Fertilizer addition increased canopy cover in untopsoiled and shallow topsoil plots via an increase in alien annual species. Fertilizer addition ultimately may lead to increased native vegetation cover in untopsoiled areas, but as it increased proteoid mortality on deep topsoil plots, it is not recommended for sites where topsoil is available. A species‐rich and structurally representative fynbos community may be restored on topsoiled areas provided that the native disturbance regime is simulated and seeds of major structural guilds not present in the soil seed bank are included in the seed mix. 相似文献
13.
Mirko Di Febbraro Luciano Bosso Mauro Fasola Francesca Santicchia Gaetano Aloise Simone Lioy Elena Tricarico Luciano Ruggieri Stefano Bovero Emiliano Mori Sandro Bertolino 《Global Change Biology》2023,29(19):5509-5523
Citizen science initiatives have been increasingly used by researchers as a source of occurrence data to model the distribution of alien species. Since citizen science presence-only data suffer from some fundamental issues, efforts have been made to combine these data with those provided by scientifically structured surveys. Surprisingly, only a few studies proposing data integration evaluated the contribution of this process to the effective sampling of species' environmental niches and, consequently, its effect on model predictions on new time intervals. We relied on niche overlap analyses, machine learning classification algorithms and ecological niche models to compare the ability of data from citizen science and scientific surveys, along with their integration, in capturing the realized niche of 13 invasive alien species in Italy. Moreover, we assessed differences in current and future invasion risk predicted by each data set under multiple global change scenarios. We showed that data from citizen science and scientific surveys captured similar species niches though highlighting exclusive portions associated with clearly identifiable environmental conditions. In terrestrial species, citizen science data granted the highest gain in environmental space to the pooled niches, determining an increased future biological invasion risk. A few aquatic species modelled at the regional scale reported a net loss in the pooled niches compared to their scientific survey niches, suggesting that citizen science data may also lead to contraction in pooled niches. For these species, models predicted a lower future biological invasion risk. These findings indicate that citizen science data may represent a valuable contribution to predicting future spread of invasive alien species, especially within national-scale programmes. At the same time, citizen science data collected on species poorly known to citizen scientists, or in strictly local contexts, may strongly affect the niche quantification of these taxa and the prediction of their future biological invasion risk. 相似文献
14.
Restoring urban forests often involves eradicating exotic species and diligently guarding against future invasions. Understanding how landscape structure contributes to the distribution of exotic species may inform these management efforts. To date, the distribution of exotic species in forested patches has been correlated with the type of development surrounding the patch, with those surrounded by agricultural or urban development often more highly invaded. Yet, previous studies have categorized land use types and have not examined more local-scale changes in land use. These local changes may be particularly important in urban areas where forested patches are immediately surrounded by diverse land use types. Our study examined how two key aspects of landscape structure, patch size and adjacent land use, may influence patterns of exotic species invasion of riparian buffers within Raleigh and Cary, North Carolina, United States. We found that large patch size alone, in our case, wide riparian buffers, does not protect against exotic species invasion. Patches surrounded by higher canopy-cover landscapes (e.g., forests and older residential developments with mature canopy) were more likely to be invaded than those surrounded by less canopy cover (e.g., shopping malls and other commercial development). We attribute these results, in part, to increased pressure from exotic propagules from adjacent forests. When restoring urban forests, attention should be paid to local land use to better plan for successful, long-term eradication of exotic species. 相似文献
15.
Antônio B. Anderson Jodir Pereira da Silva Raquel Sorvilo Carlo Leopoldo B. Francini Sergio R. Floeter João P. Barreiros 《Journal of fish biology》2020,97(2):362-373
Human-mediated species invasions are recognized as a leading cause of global biotic homogenization and extinction. Studies on colonization events since early stages, establishment of new populations and range extension are scarce because of their rarity, difficult detection and monitoring. Chromis limbata is a reef-associated and non-migratory marine fish from the family Pomacentridae found in depths ranging between 3 and 45 m. The original distribution of the species encompassed exclusively the eastern Atlantic, including the Azores, Madeira and the Canary Islands. It is also commonly reported from West Africa between Senegal and Pointe Noire, Congo. In 2008, vagrant individuals of C. limbata were recorded off the east coast of Santa Catarina Island, South Brazil (27° 41′ 44″ S, 48° 27′ 53″ W). This study evaluated the increasing densities of C. limbata populations in Santa Catarina State shoreline. Two recent expansions, northwards to São Paulo State and southwards to Rio Grande do Sul State, are discussed, and a niche model of maximum entropy (MaxEnt) was performed to evaluate suitable C. limbata habitats. Brazilian populations are established and significantly increasing in most sites where the species has been detected. The distributional boundaries predicted by the model are clearly wider than their known range of occurrence, evidencing environmental suitability in both hemispheres from areas where the species still does not occur. Ecological processes such as competition, predation and specially habitat selectivity may regulate their populations and overall distribution range. A long-term monitoring programme and population genetics studies are necessary for a better understanding of this invasion and its consequences to natural communities. 相似文献
16.
Ecological Patterns and Biological Invasions: Using Regional Species Inventories in Macroecology 总被引:1,自引:1,他引:0
Macroecology depends heavily on a comparative methodology in order to identify large-scale patterns and to test alternative hypotheses that might generate such patterns. With the advent and accessibility of large electronic databases of species and their life history and ecological attributes, ecologists have begun seeking generalities, and examining large-scale ecological hypotheses involving core themes of range, abundance and diversity. For example, combinations of ecological, life history and phylogenetic data have been analysed using large species sets to test hypotheses in invasion biology. Analysis of regional species inventories can contribute cogently to our understanding of invasions. Here we examine several ways in which database analysis is effective. We review 19 studies of comparative invasions biology, each using >100 species of plants in their analyses, and show that invader success is linked to seven correlates: short life cycle, abiotic (mostly wind) dispersal, large native range size, non-random taxonomic patterns (emphasizing certain families or orders), presence of clonal organs, occupying disturbed habitats, and earlier time of introduction. These phylogenetically influenced, comparative analyses using regional species inventories are only just beginning and have much potential. 相似文献
17.
Short-Lived Tree Species and Their Role as Indicators for Plant Diversity in the Restoration of Natural Forests 总被引:3,自引:0,他引:3
Anthropogenic forests, particularly conifer monocultures, today constitute a large proportion of Central European woodland. Conversion of such forest stands into abundantly structured mixed‐species woodland is within the focus of ecosystem restoration and is considered to affect forest biodiversity. Short‐lived tree species play an important role in such conversion processes and may serve as focal species. However, not much is known about their relationship with forest biodiversity. In this study, the short‐lived tree species, European mountain ash (Sorbus aucuparia L.), European white birch (Betula pendula Roth), Downy birch (B. pubescens Ehrh.), and Glossy buckthorn (Frangula alnus P. Mill.), commonly occurring throughout Central Europe, are investigated with regard to their relationship with plant diversity. The focus is on their occurrences in Scots pine (Pinus sylvestris L.)–dominated forests in the Northeast German lowlands. A significant increase in vascular plant diversity is revealed in stands with the selected species’ presence, in comparison to stands without them. Increase in plant species numbers is highest where the respective species occurs in the tree and/or shrub layer, compared with their presence only in the herb layer. For bryophyte species, there is a less strong inverse relationship. An analysis of different species groups, such as threatened, woody, and typical forest species of higher plants, reveals no decrease in species numbers in these groups if short‐lived tree species are present. It is concluded that short‐lived tree species can be indicators for plant diversity assessment within forest restoration processes. As to causal explanations, effects of differing site conditions, assessed by use of Ellenberg indicator values, are discussed as well as possible active effects of the tree species changing their environment. 相似文献
18.
When restoring ecosystems dominated by exotic plants, reinvasion pressure, or the rate of new exotic recruitment following mature exotic removal, can vary broadly between similarly invaded habitats. Reinvasion pressure strongly influences restoration costs and outcomes but is difficult to predict. Ontogenetic niche shifts (ONSs, changes in niche breadth or position during development) in exotic species paired with interannual variation in abiotic conditions may decouple pre‐removal mature exotic density and average reinvasion pressure. Identifying such decouplings could improve restoration efficiency by informing site selection and management strategies, but requires estimates of average reinvasion pressure that mandate greater understanding of its principle drivers. We hypothesize that reinvasion pressure is predominantly driven by exotic propagule abundance and spatiotemporal availability of realized recruitment windows, which are periods of variable duration that permit exotic establishment from propagules. Realized recruitment windows are based on the “safe sites” concept but account for ONSs and are determined by abiotic conditions and interspecific interactions with recipient communities. Biotic resistance or facilitation may increase or decrease times required for establishment by influencing exotic growth rates or altering niche availability and may permit or preclude establishment in marginal abiotic conditions. We discuss factors influencing reinvasion pressure, basic approaches to estimate reinvasion pressure, and potential ways to increase management efficiency under different reinvasion pressure scenarios. Accurate estimates of reinvasion pressure could improve restoration efficacy, efficiency, and predictability in ecosystems dominated by exotic plants. We argue that greater theoretical and practical considerations of reinvasion pressure and ONSs are merited. 相似文献
19.
20.
Life history and geographical distribution of the walnut twig beetle,Pityophthorus juglandis (Coleoptera: Scolytinae), in southern Europe 下载免费PDF全文
In September 2013, the walnut twig beetle (WTB) Pityophthorus juglandis Blackman, a species native to Mexico and south‐western USA, was recorded for the first time in Europe, in northern Italy. The collected adults were found to be vector of the fungus Geosmithia morbida Kola?ik, Freeland, Utley & Tisserat, an aggressive pathogen causing thousand cankers disease in walnut (Juglans spp.). To determine the geographical distribution of the WTB and the main aspects of biology, phenology and voltinism, an intensive survey of the main walnut plantations near the site of the first finding was conducted in 2014. The beetles began to fly with a mean air temperature of about 18°C (mid‐May) and continued until late October. Two partially overlapping generations occurred, with the second taking place in late September. The WTB was found in 14 of the 27 monitored walnut plantations. The infested sites were spread over four different non‐contiguous administrative provinces belonging to two regions (Veneto and Lombardy) of northern Italy. The most distant infested plantations were about 130 km apart along a west–east gradient, and about 70 km along a north–south gradient. In this respect, the distribution area of the WTB in northern Italy may be prudently estimated at about 4200 km2. Molecular analysis of the collected individuals showed no genetic differences among the six sampled P. juglandis populations, suggesting that a few individuals might have arrived in Italy through a single introduction event and then spread over the territory. Given the quick mortality of infested walnuts and the wide distribution area, eradication strategies appear unrealistic. Possible strategies of biological control or local chemical treatments must be investigated. 相似文献