首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is a gaseous signaling molecule with a broad spectrum of regulatory functions in plant growth and development. NO has been found to be involved in various pathogenic or symbiotic plant-microbe interactions. During the last decade, increasing evidence of the occurrence of NO during legume-rhizobium symbioses has been reported, from early steps of plant-bacteria interaction, to the nitrogen-fixing step in mature nodules. This review focuses on recent advances on NO production and function in nitrogen-fixing symbiosis. First, the potential plant and bacterial sources of NO, including NO synthase-like, nitrate reductase or electron transfer chains of both partners, are presented. Then responses of plant and bacterial cells to the presence of NO are presented in the context of the N2-fixing symbiosis. Finally, the roles of NO as either a regulatory signal of development, or a toxic compound with inhibitory effects on nitrogen fixation, or an intermediate involved in energy metabolism, during symbiosis establishment and nodule functioning are discussed.  相似文献   

2.
3.
Summary In a pot culture experiment, the influence of soil moisture stress at different physiological stages of soybean, cv. Hark, on nodulation, symbiosis and nitrogen accumulation was studied. Moisture stress reduced leghemoglobin content of root nodules and nitrogen uptake by plants. It had no effect on number of bacteroids. Stress at mid bloom and rapid pod filling stages reduced yield and seed protein content. However, these parameters were not affected by stress at nodule initiation and early flowering stages, though, flower initiation and maturity of the plant were delayed. Moisture stress at any stage did not alter nitrogen status of roots.  相似文献   

4.
We know more about the partnership between legumes and their root-nodule bacteria than about any other symbiosis or any other plant-microbe interaction. In the light of recent research we are beginning to see details of an elaborate tapestry. The rhizobia are not a self-contained branch on the bacterial tree; their ancestry is intertwined with that of photosynthetic and pathogenic bacteria. Their host ranges, which vary enormously in breadth, overlap to form a tangled web of interconnections between plants and bacteria, and mechanisms of infection and nodule development are more diverse than we once thought. From genetic analysis of the bacteria we learn that specificity is not the province of special 'host-range determinants', but is affected by a wide range of genes with diverse modes of action. The symbiosis is a rich resource for evolutionary fact and speculation, but its complexity and diversity should warn us not to expect easy answers.  相似文献   

5.
Summary Only legumes of the cowpea cross-inoculation group, including the winged bean (Psophocarpus tetragonolobus) were found to form nodules in a temperate zone soil with no previous history of legume cropping. Isolates from root nodules from uninoculated winged beans grown in the field only nodulated legumes in the cowpea cross-inoculation group.Rhizobium japonicum formed ineffective nodules with the winged bean. Contribution No.5852, Scientific Article No.A2802 of the Maryland Agricultural Experiment Station, Department of Botany.  相似文献   

6.
Summary Studies of the C and N economy of a range of temperate and tropical legume/Rhizobium symbioses indicate considerable variation (up to three-fold) in the cost of N2 fixation. Comparisons between and within symbioses indicate that the proportion of net photosynthate utilized in nodule functioning varies almost ten-fold from as low as 3% to as high as 25%. Factors possibly responsible for variation in efficiency of C use in nodules and in the proportioning of translocated photosynthetic products to nodules are discussed.  相似文献   

7.
8.
Summary The effect of two granular nematicidesviz. oxamyl and fenamiphos, on the nodulation and growth of Rhizobium inoculatedArachis hypogaea L. was studied in glasshouse and field trials. In the glasshouse trial at the suggested rates of application shoot fresh weight was significantly reduced by oxamyl whilst root fresh weight was similarly affected by fenamiphos. In the field trial vegetative growth and plant emergence were significantly reduced by both nematicides. Nodulation at the higher rates of application was increased by both oxamyl and fenamiphos whilst oxamyl caused a significant increase in pod number at the highest rate of application.  相似文献   

9.

Background

Evidence based on genomic sequences is urgently needed to confirm the phylogenetic relationship between Mesorhizobium strain MAFF303099 and M. huakuii. To define underlying causes for the rather striking difference in host specificity between M. huakuii strain 7653R and MAFF303099, several probable determinants also require comparison at the genomic level. An improved understanding of mobile genetic elements that can be integrated into the main chromosomes of Mesorhizobium to form genomic islands would enrich our knowledge of how genome dynamics may contribute to Mesorhizobium evolution in general.

Results

In this study, we sequenced the complete genome of 7653R and compared it with five other Mesorhizobium genomes. Genomes of 7653R and MAFF303099 were found to share a large set of orthologs and, most importantly, a conserved chromosomal backbone and even larger perfectly conserved synteny blocks. We also identified candidate molecular differences responsible for the different host specificities of these two strains. Finally, we reconstructed an ancestral Mesorhizobium genomic island that has evolved into diverse forms in different Mesorhizobium species.

Conclusions

Our ortholog and synteny analyses firmly establish MAFF303099 as a strain of M. huakuii. Differences in nodulation factors and secretion systems T3SS, T4SS, and T6SS may be responsible for the unique host specificities of 7653R and MAFF303099 strains. The plasmids of 7653R may have arisen by excision of the original genomic island from the 7653R chromosome.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-440) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Symbiosis genes (nod and nif) involved in nodulation and nitrogen fixation in legumes are plasmid-borne in Rhizobium. Rhizobial symbiotic variants (symbiovars) with distinct host specificity would depend on the type of symbiosis plasmid. In Rhizobium etli or in Rhizobium phaseoli, symbiovar phaseoli strains have the capacity to form nodules in Phaseolus vulgaris while symbiovar mimosae confers a broad host range including different mimosa trees.

Results

We report on the genome of R. etli symbiovar mimosae strain Mim1 and its comparison to that from R. etli symbiovar phaseoli strain CFN42. Differences were found in plasmids especially in the symbiosis plasmid, not only in nod gene sequences but in nod gene content. Differences in Nod factors deduced from the presence of nod genes, in secretion systems or ACC-deaminase could help explain the distinct host specificity. Genes involved in P. vulgaris exudate uptake were not found in symbiovar mimosae but hup genes (involved in hydrogen uptake) were found. Plasmid pRetCFN42a was partially contained in Mim1 and a plasmid (pRetMim1c) was found only in Mim1. Chromids were well conserved.

Conclusions

The genomic differences between the two symbiovars, mimosae and phaseoli may explain different host specificity. With the genomic analysis presented, the term symbiovar is validated. Furthermore, our data support that the generalist symbiovar mimosae may be older than the specialist symbiovar phaseoli.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-575) contains supplementary material, which is available to authorized users.  相似文献   

11.
Summary Experiments were done to test whether N fixation is more sensitive to high soil temperatures in common bean than in cowpea or soybean. Greenhouse experiments compared nodulation, nitrogenase activity, growth and nitrogen accumulation of several host/strain combinations of common bean with the other grain legumes and with N-fertilization, at various root temperatures. Field experiments compared relative N-accumulation (in symbiotic relative to N-fertilized plants) of common bean with cowpea under different soil thermal regimes. N-fertilized beans were unaffected by the higher temperatures, but nitrogen accumulation by symbiotic beans was always more sensitive to high root temperatures (33°C, 33/28°C, 34/28°C compared with 28°C) than were cowpea and soybean symbiosis. Healthy bean nodules that had developed at low temperatures functioned normally in acetylene reduction tests done at 35°C. High temperatures caused little or no suppression of nodule number. However, bean nodules produced at high temperatures were small and had low specific activity. ForP. vulgaris some tolerance to high temperature was observed among rhizobium strains (e.g., CIAT 899 was tolerant) but not among host cultivars. Heat tolerance ofP. acutifolius andP. lunatus symbioses was similar to that of cowpea and soybean. In the field, high surface soil temperatures did not reduce N accumulation in symbiotic beans more than in cowpea, probably because of compensatory nodulation in the deeper and cooler parts of the soil.  相似文献   

12.
《Journal of Asia》2023,26(4):102138
We reconstructed Stomaphis phylogeny and analyzed evolutionary host-plant shifts. The molecular phylogeny revealed 23 well-supported lineages, each specialized to use specific host plant family, whilst host plants of Stomaphis aphids ranged across 6 orders, 11 families, 21 genera, and 28 species. This combination of high host specificity with evolutionarily distant host shifts is exceptional in herbivores. To explain this pattern, we propose one hypothesis among several possibilities: Stomaphis aphids are generalists with respect to the defensive chemicals produced by the plant, but specialists with respect to the stem surface structure of the host tree. This hypothesis predicts that tree taxa having stem surface structures preferred by Stomaphis would be used again and again by genetically distinct Stomaphis lineages. Consistent with this prediction, we found that different (occasionally phylogenetically distant) Stomaphis lineages shared the same host plant genera such as Alnus and Betula. This result suggests that, in the course of their evolutionary history, Japanese Stomaphis aphids have repeatedly colonized a limited number of host plant genera.  相似文献   

13.
快速城市化过程中,大城市对周边中小城市的城市化具有辐射和带动作用,但周边中小城市的城市空间扩展如何响应大城市的这种影响却很少有研究。本文以上海松江区为例,应用遥感航片解译的多时相土地利用数据,研究大城市对周边中小城市的城市用地增长的影响。结果表明:受大城市城市化和区域经济快速发展的影响,上海市卫星城——松江区的城市用地增长呈现出明显的空间各向异性;城市形态的发展具有明显的大都市向心性;城市用地增长呈加速度发展,并超过大城市的发展速度。研究结果很好地验证了城市形态发展理论中的集中-扩散理论;政府决策、经济发展和人口增长,以及道路交通等基础设施的发展是促进松江区城市扩展的主要驱动因素。  相似文献   

14.
The effect of Nod factors on gas exchange characteristics and growth of soybean plants was studied. Soybean responded positively to some concentrations of Nod factors. Photosynthesis was increased up to 13% over the control, and this was accompanied by increases in stomatal conductance; plant dry weight was also increased. Near-fully expanded leaves responded more strongly to Nod factors than fully expanded leaves. Only Nod factor NodBj-V (C18:1, MeFuc) had significant effects on soybean. The finding suggests that Nod factors can affect photosynthesis, possibly indirectly, by stimulating sink strength.  相似文献   

15.
Miracidia of Schistosoma mansoni penetrate into many kinds of snails, but development of normal sporocysts takes place only in certain species of Biomphalaria. Different populations of this snail vary greatly in laboratory infection rates with S. mansoni originating from diverse geographic localities. Cross-exposure experiments show that compatibility factors exist in both snails and parasites. Susceptibility of stocks of Biomphalaria to particular strains of S. mansoni is genetically determined and may be modified by selection in the laboratory. In a compatible snail, the sporocyst develops without host tissue reaction; in incompatible snails the early larvae are rapidly surrounded by amebocytes and fibroblasts, and destroyed. This reaction resembles the generalized host cellular response elicited by any foreign body. An individual snail exposed to many miracidia may have both developing and encapsulated sporocysts side by side within its tissues. The weight of current evidence suggests that elicitation or absence of this cellular response resides in the recognition or nonrecognition of the sporocyst as a foreign body. The sporocyst tegument surface, which forms within a few hours after miracidial penetration, may have a molecular conformation identical with that of the snail, or may be able to bind specific host molecules, so that detection and subsequent encapsulation by host cells are averted. Presuming genetic determination of the sporocyst surface structure and of the host cell detection capability, differing infection rates would result from the particular frequencies of relevant genes in the populations concerned.  相似文献   

16.
The adaptive significance of egg size of skippers (Lepidoptera; Hesperiidae) in Japan was evaluated in relation to the leaf toughness of their major host grasses. The hesperids that fed on tougher grasses laid larger eggs. Hesperids that laid larger eggs were larger in body size, but lower in fecundity. They also had a wider host range. Thus, despite the lower fecundity, hesperids may benefit from large eggs by having a wider host range of larvae. Grass feeders had wider range of host plants than broadleaf feeders.  相似文献   

17.
费氏中华根瘤菌(Sinorhizobium fredii)YC4能在大豆(Glycine max)和野大豆(G.soja)上形成正常固氮的根瘤.人工培养条件下用^14C标记的薄层层析(TLC)法检测根瘤菌产生的结瘤因子(LCOs)的结果表明,与其它4株费氏中华根瘤菌相比,YC4产生的LCOs含有较多的疏水性基团.从YC4菌株中分离到1株共生质粒发生了扩增的自发突变株YSC3,其产生的LCOs中含有较野生型菌株多的1个疏水性组分,28℃培养条件下产生的LCOs量亦较YC4显著增加.结瘤试验结果表明,YSC3菌株只能在大豆和野大豆上形成无效的根瘤.  相似文献   

18.
Interplay between conserved host specificity and occasional host switches is an important process determining the evolution of host-parasite systems. Here, we address the dynamics of host switches at the population level in rodent-associated Eimeria. Focusing mainly on two ecologically similar host groups, Murinae and Arvicolinae, we show that the Eimeria infecting those hosts form a complex system of many genetic lineages with different host specificities. The broad geographic distribution of lineages indicates that they are well-established genetic forms which retained their host specificities while spreading across large geographic areas. We also demonstrate that genetic structure is only partially reflected by morphological traits.  相似文献   

19.
Consideration of vertical transmission is particularly important for understanding the life cycles of entomopathogens that are naturally occurring in invertebrate populations, are a problem in beneficial insect colonies, or are under consideration as classical biological control agents. Empirical studies generally corroborate the evolutionary hypothesis that virulence should be relatively low for pathogen species that utilize vertical transmission as one mechanism for maintenance in the host population. Nevertheless, many entomopathogens with significant effects on host populations are vertically as well as horizontally transmitted. In addition to gaining a better understanding of pathogen-host interactions and population dynamics, studies of the host range and specificity of putative biological control agents can benefit by using transmission studies to better predict ecological host specificity from physiological data. Horizontal transmission requires a tightly organized host-pathogen relationship to succeed, but still involves, albeit restricted by host behavior and pathogen dosage, the physiological susceptibility of the nontarget host. Vertical transmission studies can provide increased stringency for determining the ecological host specificity of a species and may be one very accurate predictor of the ability of a pathogen to successfully host-switch when introduced into a na?ve population.  相似文献   

20.
Summary Two methods have been developed in order to discriminate between lateral roots, nodules and root-derived structures which exhibit both root and nodule histological features and which can develop on legumes inoculated with certainRhizobium mutants. The first method, known as the clearing method, allows the observation by light microscopy of cleared undissected root-structures. The second, known as the slicing method, is a complementary technique which provides a greater degree of structural information concerning such structures. The two methods have proved invaluable in defining unequivocally the nature of the interaction between a rhizobial strain and a legume host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号