首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Farmers are carving a new agricultural frontier from the forests in the Southeast Asian Massif (SAM) in the 21st century, triggering significant environment degradation at the local scale; however, this frontier has been missed by existing global land use and forest loss analyses. In this paper, we chose Thailand's Nan Province, which is located in the geometric center of SAM, as a case study, and combined high resolution forest cover change product with a fine‐scale land cover map to investigate land use dynamics with respect to topography in this region. Our results show that total forest loss in Nan Province during 2001–2016 was 66,072 ha (9.1% of the forest cover in 2000), and that the majority of this lost forest (92%) had been converted into crop (mainly corn) fields by 2017. Annual forest loss is significantly correlated with global corn price (p < 0.01), re‐confirming agricultural expansion as a key driver of forest loss in Nan Province. Along with the increasing global corn price, forest loss in Nan Province has accelerated at a rate of 2,616 ± 730 ha per decade (p < 0.01). Global corn price peaked in 2012, in which year annual forest loss also reached its peak (7,523 ha); since then, the location of forest loss has moved to steeper land at higher elevations. Spatially, forest loss driven by this smallholder agricultural expansion emerges as many small patches that are not recognizable even at a moderate spatial resolution (e.g. 300 m). It explains how existing global land use/cover change products have missed the widespread and rapid forest loss in SAM. It also highlights the importance of high‐resolution observations to evaluate the environmental impacts of agricultural expansion and forest loss in SAM, including, but not limited to, the impacts on the global carbon cycle, regional hydrology, and local environmental degradation.  相似文献   

2.
The interactions between climate and land‐use change are dictating the distribution of flora and fauna and reshuffling biotic community composition around the world. Tropical mountains are particularly sensitive because they often have a high human population density, a long history of agriculture, range‐restricted species, and high‐beta diversity due to a steep elevation gradient. Here we evaluated the change in distribution of woody vegetation in the tropical Andes of South America for the period 2001–2014. For the analyses we created annual land‐cover/land‐use maps using MODIS satellite data at 250 m pixel resolution, calculated the cover of woody vegetation (trees and shrubs) in 9,274 hexagons of 115.47 km2, and then determined if there was a statistically significant (p < 0.05) 14 year linear trend (positive—forest gain, negative—forest loss) within each hexagon. Of the 1,308 hexagons with significant trends, 36.6% (n = 479) lost forests and 63.4% (n = 829) gained forests. We estimated an overall net gain of ~500,000 ha in woody vegetation. Forest loss dominated the 1,000–1,499 m elevation zone and forest gain dominated above 1,500 m. The most important transitions were forest loss at lower elevations for pastures and croplands, forest gain in abandoned pastures and cropland in mid‐elevation areas, and shrub encroachment into highland grasslands. Expert validation confirmed the observed trends, but some areas of apparent forest gain were associated with new shade coffee, pine, or eucalypt plantations. In addition, after controlling for elevation and country, forest gain was associated with a decline in the rural population. Although we document an overall gain in forest cover, the recent reversal of forest gains in Colombia demonstrates that these coupled natural‐human systems are highly dynamic and there is an urgent need of a regional real‐time land‐use, biodiversity, and ecosystem services monitoring network.  相似文献   

3.

Aim

This study provides regional estimates of forest cover in dry African ecoregions and the changes in forest cover that occurred there between 1990 and 2000, using a systematic sample of medium‐resolution satellite imagery which was processed consistently across the continent.

Location

The study area corresponds to the dry forests and woodlands of Africa between the humid forests and the semi‐arid regions. This area covers the Sudanian and Zambezian ecoregions.

Methods

A systematic sample of 1600 Landsat satellite imagery subsets, each 20 km × 20 km in size, were analysed for two reference years: 1990 and 2000. At each sample site and for both years, dense tree cover, open tree cover, other wooded land and other vegetation cover were identified from the analysis of satellite imagery, which comprised multidate segmentation and automatic classification steps followed by visual control by national forestry experts.

Results

Land cover and land‐cover changes were estimated at continental and ecoregion scales and compared with existing pan‐continental, regional and local studies. The overall accuracy of our land‐cover maps was estimated at 87%. Between 1990 and 2000, 3.3 million hectares (Mha) of dense tree cover, 5.8 Mha of open tree cover and 8.9 Mha of other wooded land were lost, with a further 3.9 Mha degraded from dense to open tree cover. These results are substantially lower than the 34 Mha of forest loss reported in the FAO's 2010 Global Forest Resources Assessment for the same period and area.

Main conclusions

Our method generates the first consistent and robust estimates of forest cover and change in dry Africa with known statistical precision at continental and ecoregion scales. These results reduce the uncertainty regarding vegetation cover and its dynamics in these previously poorly studied ecosystems and provide crucial information for both science and environmental policies.  相似文献   

4.
Carbon emissions from land‐use changes in tropical dry forest systems are poorly understood, although they are likely globally significant. The South American Chaco has recently emerged as a hot spot of agricultural expansion and intensification, as cattle ranching and soybean cultivation expand into forests, and as soybean cultivation replaces grazing lands. Still, our knowledge of the rates and spatial patterns of these land‐use changes and how they affected carbon emissions remains partial. We used the Landsat satellite image archive to reconstruct land‐use change over the past 30 years and applied a carbon bookkeeping model to quantify how these changes affected carbon budgets. Between 1985 and 2013, more than 142 000 km2 of the Chaco's forests, equaling 20% of all forest, was replaced by croplands (38.9%) or grazing lands (61.1%). Of those grazing lands that existed in 1985, about 40% were subsequently converted to cropland. These land‐use changes resulted in substantial carbon emissions, totaling 824 Tg C between 1985 and 2013, and 46.2 Tg C for 2013 alone. The majority of these emissions came from forest‐to‐grazing‐land conversions (68%), but post‐deforestation land‐use change triggered an additional 52.6 Tg C. Although tropical dry forests are less carbon‐dense than moist tropical forests, carbon emissions from land‐use change in the Chaco were similar in magnitude to those from other major tropical deforestation frontiers. Our study thus highlights the urgent need for an improved monitoring of the often overlooked tropical dry forests and savannas, and more broadly speaking the value of the Landsat image archive for quantifying carbon fluxes from land change.  相似文献   

5.
Large‐bodied frugivorous birds play an important role in dispersing large‐sized seeds in Neotropical rain forests, thereby maintaining tree species richness and diversity. Conversion of contiguous forest land to forest fragments is thought to be driving population declines in large‐bodied frugivores, but the mechanistic drivers of this decline remain poorly understood. To assess the importance of fragment‐level versus local landscape attributes in influencing the species richness of large‐bodied (>100 g) frugivorous birds, we surveyed 15 focal species in 22 forest fragments (2.7 to 33.6 ha, avg. = 16.0 ha) in northwest Ecuador in 2014. Fragment habitat variables included density of large trees, canopy openness and height, and fragment size; landscape variables included elevation and the proportion of tree cover within a 1 km radius of each fragment. At both the individual species level, and across the community of 12 species of avian frugivore we detected, there was higher richness and probability of presence in fragments with more tree cover on surrounding land. This tendency was particularly pronounced among some endangered species. These findings corroborate the idea that partially forested land surrounding fragments may effectively increase the suitable habitat for forest‐dwelling frugivorous birds in fragmented landscapes. These results can help guide conservation priorities within fragmented landscapes, with particular reference to retaining trees and reforesting to attain high levels of tree cover in areas between forest patches.  相似文献   

6.
To discern mechanisms maintaining the diversity of grassland and forest butterflies in coppice woods managed for the production of Japanese forest mushroom logs, we investigated the butterfly fauna in cut-over land tracts shortly after felling and 5 year later, and in forest stands 10, 15, and 25 year after felling (here, we use the term “forests” when referring to the chronosequence of these treed stands). Butterfly species richness and diversity (H′) and the densities of individuals were highest in cut-over lands 5 year after clear-cutting, followed by 25-year-old forest stands. In forests, the richness and densities of forest butterfly species were higher than were those of grassland species. Among forest stands of different ages, forest butterfly species’ richness and the densities of individuals were highest in 25-year-old woods nearing felling time. Some forest butterfly species were observed only in forests. The species richness and densities of grassland butterflies were much higher in cut-over lands 0 and 5 year post felling than in forests; grassland species were rarely found in stands ≥10 year old. Thus, cut-over lands seem to function as temporary habitats for grassland species. Furthermore, the number of forest butterfly species was the same in cut-over lands 5 year after felling and in 25-year-old forest stands; the densities of forest butterfly species was higher in these cut-over lands than in the forest stands. Forest butterfly species living on cut-over land 5 year post felling sipped flower nectar, laid eggs on host plants, and practiced territorial behaviour involved in mate finding. Hence, these cut-over lands functioned as important habitats for various developmental stages of forest butterflies. In conclusion, traditional coppicing in woods for production of Japanese forest mushroom logs is very important for the maintenance of diversity in grassland and forest butterfly species.  相似文献   

7.
We studied the relative effects of landscape configuration, environmental variables, forest age, and spatial variables on estimated aboveground biomass (AGB) in Costa Rican secondary rain forests patches. We measured trees ≥5 cm dbh in 24, 0.25 ha plots and estimated AGB for trees 5–24.9 cm dbh and for trees >25 cm dbh using two allometric equations based on multispecies models using tree dbh and wood‐specific gravity. AGB averaged 87.3 Mg/ha for the 24 plots (not including remnant trees) and 123.4 Mg/ha including remnant trees (20 plots). There was no effect of forest age on AGB. Variation partitioning analysis showed that soils, climate, landscape configuration, and space together explained 61% of tree AGB variance. When controlling for the effects of the other three variables, only soils remained significant. Soil properties, specifically K and Cu, had the strongest independent effect on AGB (variation partitioning, R2 = 0.17, p = 0.0310), indicating that in this landscape, AGB variation in secondary forest patches is influenced by soil chemical properties. Elucidating the relative influence of soils in AGB variation is critical for understanding changes associated with land cover modification across Neotropical landscapes, as it could have important consequences for land use planning since secondary forests are considered carbon sinks. Abstract in Spanish is available with online material.  相似文献   

8.
Northern Europe supports large soil organic carbon (SOC) pools and has been subjected to high frequency of land‐use changes during the past decades. However, this region has not been well represented in previous large‐scale syntheses of land‐use change effects on SOC, especially regarding effects of afforestation. Therefore, we conducted a meta‐analysis of SOC stock change following afforestation in Northern Europe. Response ratios were calculated for forest floors and mineral soils (0–10 cm and 0–20/30 cm layers) based on paired control (former land use) and afforested plots. We analyzed the influence of forest age, former land‐use, forest type, and soil textural class. Three major improvements were incorporated in the meta‐analysis: analysis of major interaction groups, evaluation of the influence of nonindependence between samples according to study design, and mass correction. Former land use was a major factor contributing to changes in SOC after afforestation. In former croplands, SOC change differed between soil layers and was significantly positive (20%) in the 0–10 cm layer. Afforestation of former grasslands had a small negative (nonsignificant) effect indicating limited SOC change following this land‐use change within the region. Forest floors enhanced the positive effects of afforestation on SOC, especially with conifers. Meta‐estimates calculated for the periods <30 years and >30 years since afforestation revealed a shift from initial loss to later gain of SOC. The interaction group analysis indicated that meta‐estimates in former land‐use, forest type, and soil textural class alone were either offset or enhanced when confounding effects among variable classes were considered. Furthermore, effect sizes were slightly overestimated if sample dependence was not accounted for and if no mass correction was performed. We conclude that significant SOC sequestration in Northern Europe occurs after afforestation of croplands and not grasslands, and changes are small within a 30‐year perspective.  相似文献   

9.
Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio‐tracked two woodcreepers (Glyphorynchus spirurus, N = 17; Xiphorhynchus pardalotus, N = 18) and a terrestrial antthrush (Formicarius colma, N = 19). We modeled species‐specific response to distance to forest edge (a continuous variable) based on observations at varying distances from the primary‐secondary forest interface. All species avoided 8–14‐yr‐old secondary forest. Glyphorynchus spirurus and F. colma mostly remained within primary forest <100 m from the young edge. Young F. colma rarely penetrated >100 m into secondary forest 27–31 yr old. Young Formicarius colma and most G. spirurus showed a unimodal response to 8–14‐yr‐old secondary forest, with relative activity concentrated just inside primary forest. After land abandonment, G. spirurus was the first to recover to the point where there was no detectable edge response (after 11–14 yr), whereas X. pardalotus was intermediate (15–20 yr), and F. colma last (28–30 yr +). Given the relatively quick recovery by our woodcreeper species, new legislation on protection of secondary forests > 20‐yr old in Brazil's Pará state may represent a new opportunity for conservation and management; however, secondary forest must mature to at least 30 yr before the full compliment of rain forest‐dependent species can use secondary forest without adverse edge effects.  相似文献   

10.
Sub‐Saharan Africa (SSA) could face food shortages in the future because of its growing population. Agricultural expansion causes forest degradation in SSA through livestock grazing, reducing forest carbon (C) sinks and increasing greenhouse gas (GHG) emissions. Therefore, intensification should produce more food while reducing pressure on forests. This study assessed the potential for the dairy sector in Kenya to contribute to low‐emissions development by exploring three feeding scenarios. The analyses used empirical spatially explicit data, and a simulation model to quantify milk production, agricultural emissions and forest C loss due to grazing. The scenarios explored improvements in forage quality (Fo), feed conservation (Fe) and concentrate supplementation (Co): FoCo fed high‐quality Napier grass (Pennisetum purpureum), FeCo supplemented maize silage and FoFeCo a combination of Napier, silage and concentrates. Land shortages and forest C loss due to grazing were quantified with land requirements and feed availability around forests. All scenarios increased milk yields by 44%–51%, FoCo reduced GHG emission intensity from 2.4 ± 0.1 to 1.6 ± 0.1 kg CO2eq per kg milk, FeCo reduced it to 2.2 ± 0.1, whereas FoFeCo increased it to 2.7 ± 0.2 kg CO2eq per kg milk because of land use change emissions. Closing the yield gap of maize by increasing N fertilizer use reduced emission intensities by 17% due to reduced emissions from conversion of grazing land. FoCo was the only scenario that mitigated agricultural and forest emissions by reducing emission intensity by 33% and overall emissions by 2.5% showing that intensification of dairy in a low‐income country can increase milk yields without increasing emissions. There are, however, risks of C leakage if agricultural and forest policies are not aligned leading to loss of forest to produce concentrates. This approach will aid the assessment of the climate‐smartness of livestock production practices at the national level in East Africa.  相似文献   

11.
Large areas of rainforests in Australia and other tropical regions have been extensively cleared since the mid‐19th century. As abandoned agro‐pastoral land becomes increasingly prominent, there is an ongoing need to identify cost‐effective approaches to reinstate forest on these landscapes. Assisted regeneration is a potentially lower cost restoration approach which aims to accelerate forest recovery by removing barriers to natural regeneration. However, despite being widely used its ecological benefits are poorly quantified, particularly on long cleared and grazed land. This study quantified the benefits of assisted regeneration on previously cleared land in a subtropical rainforest ecosystem within eastern Australia. Three different site types were used (grazed, grazing excluded and grazing excluded plus assisted regeneration, each with a maximum distance of 120 m to remnant forest) to compare forest recovery up to 10 years after grazing was relieved with and without 4–6 years of assisted regeneration. Assisted regeneration sites showed a threefold increase in canopy cover, fourfold increase in native tree and shrub species richness and over 40 times greater native stem density compared to nonassisted regeneration sites. Stimulation of native recruitment appears dependent on the simultaneous removal of multiple barriers to regeneration, with the exclusion of grazing alone insufficient. This demonstrates the additional ecological benefits arising from investment in assisted regeneration. It offers considerable promise as a cost‐effective tool for accelerating and improving reinstatement of forest on retired agro‐pastoral land in the humid subtropics.  相似文献   

12.
The potential for climate change mitigation by bioenergy crops and terrestrial carbon sinks has been the object of intensive research in the past decade. There has been much debate about whether energy crops used to offset fossil fuel use, or carbon sequestration in forests, would provide the best climate mitigation benefit. Most current food cropland is unlikely to be used for bioenergy, but in many regions of the world, a proportion of cropland is being abandoned, particularly marginal croplands, and some of this land is now being used for bioenergy. In this study, we assess the consequences of land‐use change on cropland. We first identify areas where cropland is so productive that it may never be converted and assess the potential of the remaining cropland to mitigate climate change by identifying which alternative land use provides the best climate benefit: C4 grass bioenergy crops, coppiced woody energy crops or allowing forest regrowth to create a carbon sink. We do not present this as a scenario of land‐use change – we simply assess the best option in any given global location should a land‐use change occur. To do this, we use global biomass potential studies based on food crop productivity, forest inventory data and dynamic global vegetation models to provide, for the first time, a global comparison of the climate change implications of either deploying bioenergy crops or allowing forest regeneration on current crop land, over a period of 20 years starting in the nominal year of 2000 ad . Globally, the extent of cropland on which conversion to energy crops or forest would result in a net carbon loss, and therefore likely always to remain as cropland, was estimated to be about 420.1 Mha, or 35.6% of the total cropland in Africa, 40.3% in Asia and Russia Federation, 30.8% in Europe‐25, 48.4% in North America, 13.7% in South America and 58.5% in Oceania. Fast growing C4 grasses such as Miscanthus and switch‐grass cultivars are the bioenergy feedstock with the highest climate mitigation potential. Fast growing C4 grasses such as Miscanthus and switch‐grass cultivars provide the best climate mitigation option on ≈485 Mha of cropland worldwide with ~42% of this land characterized by a terrain slope equal or above 20%. If that land‐use change did occur, it would displace ≈58.1 Pg fossil fuel C equivalent (Ceq oil). Woody energy crops such as poplar, willow and Eucalyptus species would be the best option on only 2.4% (≈26.3 Mha) of current cropland, and if this land‐use change occurred, it would displace ≈0.9 Pg Ceq oil. Allowing cropland to revert to forest would be the best climate mitigation option on ≈17% of current cropland (≈184.5 Mha), and if this land‐use change occurred, it would sequester ≈5.8 Pg C in biomass in the 20‐year‐old forest and ≈2.7 Pg C in soil. This study is spatially explicit, so also serves to identify the regional differences in the efficacy of different climate mitigation options, informing policymakers developing regionally or nationally appropriate mitigation actions.  相似文献   

13.
Agricultural intensification in tropical landscapes poses a new threat to the ability of biological corridors to maintain functional connectivity for native species. We use a landscape genetics approach to evaluate impacts of expanding pineapple plantations on two widespread and abundant frugivorous bats in a biological corridor in Costa Rica. We hypothesize that the larger, more mobile Artibeus jamaicensis will be less impacted by pineapple than the smaller Carollia castanea. In 2012 and 2013, we sampled 735 bats in 26 remnant forest patches surrounded by different proportions of forest, pasture, crops and pineapple. We used 10 microsatellite loci for A. jamaicensis and 16 microsatellite loci for C. castanea to estimate genetic diversity and gene flow. Canonical correspondence analyses indicate that land cover type surrounding patches has no impact on genetic diversity of A. jamaicensis. However, for C. castanea, both percentage forest and pineapple surrounding patches explained a significant proportion of the variation in genetic diversity. Least‐cost transect analyses (LCTA) and pairwise G″st suggest that for A. jamaicensis, pineapple is more permeable to gene flow than expected, while as expected, forest is the most permeable land cover for gene flow of C. castanea. For both species, LCTA indicate that development may play a role in inhibiting gene flow. The current study answers the call for landscape genetic research focused on tropical and agricultural landscapes, highlights the value of comparative landscape genetics in biological corridor design and management and is one of the few studies of biological corridors in any ecosystem to implement a genetic approach to test corridor efficacy.  相似文献   

14.
Secondary succession following land abandonment, represented by a chronosequence of 15 old fields (0–80 years old) and two old-growth forests, was studied in the tropical montane cloud forest region of Veracruz, Mexico. The objective was to determine successional trajectories in forest structure and species richness of trees ≥5 cm DBH, in terms of differences in seed dispersal mode, shade tolerance, and phytogeographical affinity. Data were analyzed using AIC model selection and logistic regressions. Mean and maximum canopy height reached values similar to old-growth forest at 35 and 80 years, respectively. Species richness and diversity values were reached earlier (15 and 25 years, respectively) while basal area and stem density tended to reach old-growth forest values within 80 years. Along the chronosequence, the proportion of species and individuals of wind-dispersed trees declined, that of bird dispersed small seeded trees remained constant, while that of gravity and animal dispersed large seeded trees increased; shade-intolerant species and individuals declined, while intermediate and shade-tolerant trees increased. Shade-tolerant canopy trees were rare during succession, even in the old-growth forest. Tropical tree species were more frequent than temperate ones throughout the chronosequence, but temperate tree individuals became canopy dominants at intermediate and old-growth forest stages.  相似文献   

15.
We examined the impacts of land-use history on the species composition and diversity of a warm-temperate riparian forest landscape in Kyushu, southern Japan, focusing on the relationship between evergreen oaks and deciduous trees in natural and seminatural forests. The species composition of 59 plots was classified into four types (A to D). Type A, which showed a significant bias towards sites not subject to nonforest land use since 1947, had high species diversity consisting of (1) many lucidophyllous components of the region, including the rare indigenous oak Quercus hondae, and (2) summergreen tree species of varying dominance and number representing unique or locally rare elements of the riparian landscape in this warm-temperate region. Type B was dominated by a common species of oak, Q. glauca, and displayed less clear distribution bias with land-use history. In contrast to types A and B, types C and D, which were characterized by high dominance of deciduous trees, had negative bias away from sites that had been under forest land use in 1947. Presumably, intensive anthropogenic disturbances associated with nonforest land uses had expanded the habitats for deciduous trees. This phenomenon was represented by the establishment of forests (type D) dominated by Ulmus davidiana var. japonica (UDJ) after it had been released from the suppression of evergreen forest trees during a period of nonforest land use that prevents the successful recovery of evergreen trees. From these results we conclude that the impacts of land-use history on the diversity of warm-temperate riparian forest landscape are multiphased: a period of nonforest land use has a strong negative impact on lucidophyllous forest trees represented by the rare indigenous oak Q. hondae; release from the suppressive effects of the lucidophyllous species then encourages establishment of locally rare deciduous tree flora represented by UDJ, which continue to persist for decades after abandonment of nonforest land use.  相似文献   

16.
Land‐based solutions are indispensable features of most climate mitigation scenarios. Here we conduct a novel cross‐sectoral assessment of regional carbon mitigation potential by running an ecosystem model with an explicit representation of forest structure and climate impacts for Bavaria, Germany, as a case study. We drive the model with four high‐resolution climate projections (EURO‐CORDEX) for the representative concentration pathway RCP4.5 and present‐day land‐cover from three satellite‐derived datasets (CORINE, ESA‐CCI, MODIS) and identify total mitigation potential by not only accounting for carbon storage but also material and energy substitution effects. The model represents the current state in Bavaria adequately, with a simulated forest biomass 12.9 ± 0.4% lower than data from national forest inventories. Future land‐use changes according to two ambitious land‐use harmonization scenarios (SSP1xRCP2.6, SSP4xRCP3.4) achieve a mitigation of 206 and 247 Mt C (2015–2100 period) via reforestation and the cultivation and burning of dedicated bioenergy crops, partly combined with carbon capture and storage. Sensitivity simulations suggest that converting croplands or pastures to bioenergy plantations could deliver a carbon mitigation of 40.9 and 37.7 kg C/m2, respectively, by the year 2100 if used to replace carbon‐intensive energy systems and combined with CCS. However, under less optimistic assumptions (including no CCS), only 15.3 and 12.2 kg C/m2 are mitigated and reforestation might be the better option (20.0 and 16.8 kg C/m2). Mitigation potential in existing forests is limited (converting coniferous into mixed forests, nitrogen fertilization) or even negative (suspending wood harvest) due to decreased carbon storage in product pools and associated substitution effects. Our simulations provide guidelines to policy makers, farmers, foresters, and private forest owners for sustainable and climate‐benefitting ecosystem management in temperate regions. They also emphasize the importance of the CCS technology which is regarded critically by many people, making its implementation in the short or medium term currently doubtable.  相似文献   

17.
Agricultural land abandonment is one of the main drivers of land use change, leading to various responses of farmland ecological communities. In an effort to better understand the effect of agricultural land abandonment on passerine bird communities, we sampled 20 randomly selected sites [1 km × 1 km] in remote Greek mountains, reflecting an abandonment gradient, in terms of forest encroachment. We sampled 169 plots using the point count method of fixed distance (47 passerine species), and we investigated bird diversity and community structure turnover along the gradient. We found that grazing intensity has a beneficial effect hampering forest encroachment that follows progressively land abandonment. Habitat composition changes gradually with forests developing at the expense of open meadows and heterogeneous grasslands. Forest encroachment has a significant negative effect on bird diversity and species richness, affecting in particular typical farmland and Mediterranean shrubland species. Birds form five distinct ecological clusters after land abandonment: species mostly found in pinewoods and cavity-dwelling species; species that prefer open forests forest edges or ecotones; species that prefer shrubland or open habitats with scattered woody vegetation; Mediterranean farmland birds that prefer semi-open habitats with hedges and/or woodlots; and, generalist forest-dwelling or shrubland species. We extracted a set of 22 species to represent the above ecological communities, as a new monitoring tool for agricultural land use change and conservation. We suggest that the maintenance of rural mosaics should be included in the priorities of agricultural policy for farmland bird diversity conservation.  相似文献   

18.
Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio‐economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest area, we homogenized statistics at the provincial level for ad 1700–2010 to identify forest transition years and forest trends. We contrast our reconstruction with the KK11 and HYDE 3.1 land change scenarios, and use all three datasets to drive the LPJ dynamic global vegetation model to calculate carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable or continuously declining forest area. Our data suggest extensive deforestation in European Russia already prior to ad 1700, and even greater deforestation in the 18th and 19th centuries than in the KK11 and HYDE scenarios. Based on our reconstruction, cumulative carbon emissions from deforestation were greater before 1700 (60 Pg C) than thereafter (29 Pg C). Summed over our entire study area, forest transitions led to a modest uptake in carbon over recent decades, with our dataset showing the smallest effect (<5.5 Pg C) and a more heterogeneous pattern of source and sink regions. This suggests substantial sequestration potential in regrowing forests of the region, a trend that may be amplified through ongoing land abandonment, climate change, and CO2 fertilization.  相似文献   

19.
Tropical peatlands are a known source of methane (CH4) to the atmosphere, but their contribution to atmospheric CH4 is poorly constrained. Since the 1980s, extensive areas of the peatlands in Southeast Asia have experienced land‐cover change to smallholder agriculture and forest plantations. This land‐cover change generally involves lowering of groundwater level (GWL), as well as modification of vegetation type, both of which potentially influence CH4 emissions. We measured CH4 exchanges at the landscape scale using eddy covariance towers over two land‐cover types in tropical peatland in Sumatra, Indonesia: (a) a natural forest and (b) an Acacia crassicarpa plantation. Annual CH4 exchanges over the natural forest (9.1 ± 0.9 g CH4 m?2 year?1) were around twice as high as those of the Acacia plantation (4.7 ± 1.5 g CH4 m?2 year?1). Results highlight that tropical peatlands are significant CH4 sources, and probably have a greater impact on global atmospheric CH4 concentrations than previously thought. Observations showed a clear diurnal variation in CH4 exchange over the natural forest where the GWL was higher than 40 cm below the ground surface. The diurnal variation in CH4 exchanges was strongly correlated with associated changes in the canopy conductance to water vapor, photosynthetic photon flux density, vapor pressure deficit, and air temperature. The absence of a comparable diurnal pattern in CH4 exchange over the Acacia plantation may be the result of the GWL being consistently below the root zone. Our results, which are among the first eddy covariance CH4 exchange data reported for any tropical peatland, should help to reduce the uncertainty in the estimation of CH4 emissions from a globally important ecosystem, provide a more complete estimate of the impact of land‐cover change on tropical peat, and develop science‐based peatland management practices that help to minimize greenhouse gas emissions.  相似文献   

20.
The spatial structure, functionality and dynamics of forest landscapes in peninsular Spain and the Balearic Islands were compared over the last five decades. Two particular features were studied in the sample sites: forest connectivity for wildlife and areas burnt by wildfires. 191 Squares, each 4 km × 4 km, were selected from the SISPARES (the monitoring framework designed to evaluate the trends in the structure of Spanish rural landscapes) environmental strata. Aerial photographs from 1956, 1984, 1998 and 2008 were interpreted and 11 land cover categories mapped and checked in the field, using a minimum mapping area of one hectare. The Equivalent Connected Area Index was used to assess forest connectivity over the sampling period. Social and economical factors were assessed using indicators of farm intensiveness. The Spanish forest connectivity has improved in the last five decades although two different trends can be identified: the first 40 years are characterized by positive rates of growth whereas the 10 last years are characterized by their stability. Nevertheless the area of burnt land was higher along the first 25 studied years and decreased significantly over the last decade.Our results show the climate is the main driver in the evolution of forest connectivity and burnt area in the forest landscapes, playing a direct role on forest biomass production and wildfire ignition and propagation, as well as an indirect role by keeping vertical and horizontal forest continuity through the landscape spatial pattern. Social and economic factors are very important drivers as well: Rural population density and farm size average have been tested as good indicators of landscape artificiality, highly correlated to wildfire hazard and forest connectivity.Finally, we have pointed out the evolutionary path followed by SISPARES framework as a tool for monitoring rural landscapes. It emphasises on the requirement of a 30 years time window for building-up reliable dynamic multifunctional model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号