首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon retroviral infection, the genomic RNA is reverse transcribed to make proviral DNA, which is then integrated into the host chromosome. Although the viral elements required for successful integration have been extensively characterized, little is known about the host DNA structure constituting preferred targets for proviral integration. In order to elucidate the mechanism for the target selection, comparison of host DNA sequences at proviral integration sites may be useful. To achieve simultaneous analysis of the upstream and downstream host DNA sequences flanking each proviral integration site, a Moloney murine leukemia virus-based retroviral vector was designed so that its integrated provirus could be removed by Cre-loxP homologous recombination, leaving a solo long terminal repeat (LTR). Taking advantage of the solo LTR, inverse PCR was carried out to amplify both the upstream and downstream cellular flanking DNA. The method called solo LTR inverse PCR, or SLIP, proved useful for simultaneously cloning the upstream and downstream flanking sequences of individual proviral integration sites from the polyclonal population of cells harboring provirus at different chromosomal sites. By the SLIP method, nucleotide sequences corresponding to 38 independent proviral integration targets were determined and, interestingly, atypical virus-host DNA junction structures were found in more than 20% of the cases. Characterization of retroviral integration sites using the SLIP method may provide useful insights into the mechanism for proviral integration and its target selection.  相似文献   

2.
3.
T Hong  K Drlica  A Pinter    E Murphy 《Journal of virology》1991,65(1):551-555
During infection of cells by retroviruses, some of the nonintegrated viral DNA can be found as a circular form containing two tandem, directly repeated long terminal repeats. The nucleotide sequence at the point where the long terminal repeats join (the circle junction) can be used to deduce the terminal nucleotides of the linear form of the viral DNA. Comparison of the termini of linear viral DNA with sequences at the junctions between the integrated provirus and the host chromosome has revealed that for most retroviruses 2 bp are removed from each end of the linear viral DNA during integration. For human immunodeficiency virus type 1 (HIV-1), however, sequence considerations involving primer-binding sites had suggested that only 1 bp is removed during integration. We obtained the nucleotide sequences at the ends of HIV-1 DNA by using the polymerase chain reaction to amplify fragments corresponding to the HIV-1 circle junction. Of 17 clones containing amplified sequences, 10 had identical circle junctions that contained an additional 4 bp (GTAC) relative to the integrated provirus. This indicates that, as for other retroviruses, 2 bp are removed from each end of the linear HIV-1 viral DNA during integration. The remaining seven isolates contained insertions or deletions at the circle junction.  相似文献   

4.
The nucleotide sequence of the long terminal repeat (LTR) of three murine retroviral DNAs has been determined. The data indicate that the U5 region (sequences originating from the 5' end of the genome) of various LTRs is more conserved than the U3 region (sequences from the 3' end of the genome). The location and sequence of the control elements such as the 5' cap, "TATA-like" sequences, "CCAAT-box," and presumptive polyadenylic acid addition signal AATAAA in the various LTRs are nearly identical. Some murine retroviral DNAs contain a duplication of sequences within the LTR ranging in size from 58 to 100 base pairs. A variant of molecularly cloned Moloney murine sarcoma virus DNA in which one of the two LTRs integrated into the viral DNA was also analyzed. A 4-base-pair duplication was generated at the site of integration of LTR in the viral DNA. The host-viral junction of two molecularly cloned AKR-murine leukemia virus DNAs (clones 623 and 614) was determined. In the case of AKR-623 DNA, a 3- or 4-base-pair direct repeat of cellular sequences flanking the viral DNA was observed. However, AKR-614 DNA contained a 5-base-pair repeat of cellular sequences. The nucleotide sequence of the preintegration site of AKR-623 DNA revealed that the cellular sequences duplicated during integration are present only once. Finally, a striking homology between the sequences flanking the preintegration site and viral LTRs was observed.  相似文献   

5.
Integrated retroviral genomes are flanked by direct repeats of sequences derived from the termini of the viral RNA genome. These sequences are designated long terminal repeats (LTRs). We have determined and analyzed the nucleotide sequence of the LTRs from several exogenous and endogenous avian retroviruses. These LTRs possess several structural similarities with eukaryotic and prokaryotic transposable elements: 1) inverted complementary repeats at the termini, 2) deletions of sequences adjacent to the LTR, 3) small duplications of host sequences flanking the integrated provirus, and 4) sequence homologies with transposable and other genetic elements. These observations suggest that LTRs function in the integration and perhaps transposition of retrovirus genomes. Evidence exists for the presence of a strong promoter sequence within the LTR. The retroviral LTR also contains a "Hogness box" up-stream of the capping site and a poly(A) signal. These features suggest an additional role for the LTR in the regulation of gene expression.  相似文献   

6.
7.
8.
Stocks of hybrid lambda phages carrying the complete integrated provirus of either m1 or HT1 Moloney murine sarcoma virus, as well as flanking host sequences, frequently contain significant numbers of phages carrying a specific deletion. This deletion arises from a recombination event between the terminally repeated sequences in the provirus that deletes the unique Moloney murine sarcoma virus sequences bracketed by the terminally repeated sequences. Physical mapping has shown that the deletion phage retains one complete copy of the terminally repeated sequence and the flanking mink host sequences. One such deletion, lambdaHT1r+, was used to characterize a mink genomic DNA sequence that contains an HT1 Moloney murine sarcoma virus integration site. This integration site sequence from normal mink cells was also cloned into phage lambda. An analysis of the heteroduplexes between the integration site and the lambdaHT1r+ deletion indicated that no major rearrangement of host sequences occurred upon integration of the Moloney murine sarcoma provirus.  相似文献   

9.
10.
R Levis  P Dunsmuir  G M Rubin 《Cell》1980,21(2):581-588
We have determined the nucleotide sequence of the terminal regions of two members of the copia sequence family of D. melanogaster. The first 276 bp at one end of a copia element are repeated in direct orientation at its other end. The direct repeats on a single copia element are identical to each other, but they differ by two nucleotide substitutions between the two elements which were examined; this suggests that during transposition only one direct repeat of the parent element is used as a template for both direct repeats of the transposed element. Each direct repeat itself contain a 17 bp imperfectly matched inveted terminal repetition. The ends of copia show significant sequence homology both to the yeast Ty1 element and to the integrated provirus of avian spleen necrosis virus, two other eucaryotic elements known to insert at many different chromosomal locations. Analysis of the genomic organization of the direct repeat sequence demonstrates that it seldom, if ever, occurs unlinked to an entire copia element.  相似文献   

11.
We used hybridization probes that react specifically with xenotropic and mink cell focus-forming virus envelope sequences to characterize the nonecotropic proviruses of BALB/c and NFS/N mice. Analysis of somatic cell hybrids with different BALB/c chromosomes showed that the 9 xenotropic and more than 20 MCF virus-related proviral sequences in this mouse were present on more than nine BALB/c chromosomes. Multiple copies were found on chromosomes 1, 4, 7, 12, and probably 11, and the copies found on a single chromosome were not identical by restriction enzyme mapping. We also identified and characterized the proviral sequences that give rise to infectious xenotropic virus in both BALB/c and NFS/N mice. BALB/c contains the major locus for induction of infectious virus in inbred mice, Bxv-1, which is on chromosome 1. We showed that this locus contains a single xenotropic provirus on an 18-kilobase HindIII fragment. Restriction enzyme analysis of a hybrid cell DNA that contains only the Bxv-1 xenotropic provirus showed that the Bxv-1 provirus contains restriction enzyme sites characteristic of the infectious virus induced from BALB/c fibroblasts. The Bxv-1 provirus and its flanking sequences also contain the same restriction sites as the provirus thought to contribute U3 long terminal repeat sequences to leukemogenic (class I) AKR MCF viruses. Analysis of cell hybrids made with the nonvirus-inducible strain NFS/N showed that the single xenotropic virus env gene of NFS mice, here termed Nfxv-1, is not on chromosome 1. Unlike that of Bxv-1, the restriction map of Nfxv-1 does not resemble that of any known infectious xenotropic virus including xenotropic viruses isolated from NFS mice. These data suggest that Bxv-1, but not Nfxv-1, is a full-length xenotropic provirus that can be transcribed directly to produce infectious virus.  相似文献   

12.
13.
The mouse genomic locus containing the oncogene c-mos was analyzed for repetitive DNA sequences. We found a single B1 repeat 10 kb upstream and three B1 repeats 0.6 kb, 2.7 kb, and 5.4 kb, respectively, downstream from c-mos. The B1 repeat closest to c-mos contains an internal 7-bp duplication and a 18-bp insertion. Localized between the last two B1 repeats is a copy of a novel mouse repeat. Sequence comparison of three copies of this novel repeat family shows that they a) contain a conserved BglII site, b) are approximately 420 bp long, c) possess internal 50-bp polypurine tracts, and d) have structural characteristics of transposable elements. They are present in about 1500 copies per haploid genome in the mouse, but are not detectable in DNA of other mammals. The BglII repeat downstream from c-mos is interrupted by a single 632-bp LTR element. We estimate that approximately 1200 copies of this element are present per haploid genome in BALB/c mice. It shares sequence homology in the R-U5 region with an LTR element found in 129/J mice.  相似文献   

14.
Two proviruses were cloned from EcoRI-digested DNA extracted from mink cells chronically infected with AKR mink cell focus-forming (MCF) 247 murine leukemia virus (MuLV), using a lambda phage host vector system. One cloned MuLV DNA fragment (designated MCF 1) contained sequences extending 6.8 kilobases from an EcoRI restriction site in the 5' long terminal repeat (LTR) to an EcoRI site located in the envelope (env) region and was indistinguishable by restriction endonuclease mapping for 5.1 kilobases (except for the EcoRI site in the LTR) from the 5' end of AKR ecotropic proviral DNA. The DNA segment extending from 5.1 to 6.8 kilobases contained several restriction sites that were not present in the AKR ecotropic provirus. A 0.5-kilobase DNA segment located at the 3' end of MCF 1 DNA contained sequences which hybridized to a xenotropic env-specific DNA probe but not to labeled ecotropic env-specific DNA. This dual character of MCF 1 proviral DNA was also confirmed by analyzing heteroduplex molecules by electron microscopy. The second cloned proviral DNA (designated MCF 2) was a 6.9-kilobase EcoRI DNA fragment which contained LTR sequences at each end and a 2.0-kilobase deletion encompassing most of the env region. The MCF 2 proviral DNA proved to be a useful reagent for detecting LTRs electron microscopically due to the presence of nonoverlapping, terminally located LTR sequences which effected its circularization with DNAs containing homologous LTR sequences. Nucleotide sequence analysis demonstrated the presence of a 104-base-pair direct repeat in the LTR of MCF 2 DNA. In contrast, only a single copy of the reiterated component of the direct repeat was present in MCF 1 DNA.  相似文献   

15.
16.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

17.
18.
19.
Intramolecular integration within Moloney murine leukemia virus DNA   总被引:36,自引:19,他引:17       下载免费PDF全文
By screening a library of unintegrated, circular Moloney murine leukemia virus (M-MuLV) DNA cloned in lambda phage, we found that approximately 20% of the M-MuLV DNA inserts contained internal sequence deletions or inversions. Restriction enzyme mapping demonstrated tht the deleted segments frequently abutted a long terminal repeat (LTR) sequence, whereas the inverted segments were usually flanked by LTR sequences, suggesting that many of the variants arose as a consequence of M-MuLV DNA molecules integrating within their own DNA. Nucleotide sequencing also suggested that most of the variant inserts were generated by autointegration. One of the recombinant M-MuLV DNA inserts contained a large inverted repeat of a unique M-MuLV sequence abutting an LTR. This molecule was shown by nucleotide sequencing to have arisen by an M-MuLV DNA Molecule integrating within a second M-MuLV DNA molecule before cloning. The autointegrated M-MuLV DNA had generally lost two base pairs from the LTR sequence at each junction with target site DNA, whereas a four-base-pair direct repeat of target site DNA flanked the integrated viral DNA. Nucleotide sequencing of preintegration target site DNA showed that this four-base-pair direct repeat was present only once before integration and was thus reiterated by the integration event. The results obtained from the autointegrated clones were supported by nucleotide sequencing of the host-virus junction of two cloned M-MuLV integrated proviruses obtained from infected rat cells. Detailed analysis of the different unique target site sequences revealed no obvious common features.  相似文献   

20.
We have constructed a recombinant simian virus 40 (SV40) DNA containing a copy of the Harvey murine sarcoma virus long terminal repeat (LTR). This recombinant viral DNA was converted into an infectious SV40 virus particle and subsequently infected into NIH 3T3 cells (either uninfected or previously infected with Moloney leukemia virus). We found that this hybrid virus, SVLTR1, transforms cells with 10 to 20 times the efficiency of SV40 wild type. Southern blot analysis of these transformed cell genomic DNAs revealed that simple integration of the viral DNA within the retrovirus LTR cannot account for the enhanced transformation of the recombinant virus. A restriction fragment derived from the SVLTR-1 virus which contains an intact LTR was readily identified in a majority of the transformed cell DNAs. These results suggest that the LTR fragment which contains the attachment sites and flanking sequences for the proviral DNA duplex may be insufficient by itself to facilitate correct retrovirus integration and that some other functional element of the LTR is responsible for the increased transformation potential of this virus. We have found that a complete copy of the Harvey murine sarcoma virus LTR linked to well-defined structural genes lacking their own promoters (SV40 early region, thymidine kinase, and G418 resistance) can be effectively used to promote marker gene expression. To determine which element of the LTR served to enhance the biological activity of the recombinant virus described above, we deleted DNA sequences essential for promoter activity within the LTR. SV40 virus stocks reconstructed with this mutated copy of the Harvey murine sarcoma virus LTR still transform mouse cells at an enhanced frequency. We speculate that when the LTR is placed more than 1.5 kilobases from the SV40 early promoter, the cis-acting enhancer element within the LTR can increase the ability of the SV40 promoter to effectively operate when integrated in a murine chromosome. These data are discussed in terms of the apparent cell specificity of viral enhancer elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号