首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avian myelocytomatosis virus (MC29V) is a retrovirus that transforms both fibroblasts and macrophages in culture and induces myelocytomatosis, carcinomas, and sarcomas in birds. Previous work identified a sequence of about 1,500 nucleotides (here denoted oncMCV) that apparently derived from a normal cellular sequence and that may encode the oncogenic capacity of MC29V. In an effort to further implicate oncMCV in tumorigenesis, we used molecular hybridization to examine the distribution of nucleotide sequences related to oncMCV among the genomes of various avian retroviruses. In addition, we characterized further the genetic composition of the remainder of the MC29V genome. Our work exploited the availability of radioactive DNAs (cDNA's) complementary to oncMCV (cDNAMCV) or to specific portions of the genome of avian sarcoma virus (ASV). We showed that genomic RNAs of avian erythroblastosis virus (AEV) and avian myeloblastosis virus (AMV) could not hybridize appreciably with cDNAMCV. By contrast, cDNAMCV hybridized extensively (about 75%) and with essentially complete fidelity to the genome of Mill Hill 2 virus (MH2V), whose pathogenicity is very similar to that of MC29V, but different from that of AEV or AMV. Hybridization with the ASV cDNA's demonstrated that the MC29V genome includes about half of the ASV envelope protein gene and that the remainder of the MC29V genome is closely related to nucleotide sequences that are shared among the genomes of many avian leukosis and sarcoma viruses. We conclude that oncMCV probably specifies the unique set of pathogenicities displayed by MC29V and MH2V, whereas the oncogenic potentials of AEV and AMV are presumably encoded by a distinct nucleotide sequence unrelated to oncMCV. The genomes of ASV, MC29V, and other avian oncoviruses thus share a set of common sequences, but apparently owe their various oncogenic potentials to unrelated transforming genes.  相似文献   

2.
3.
Turnip yellow mosaic virus (TYMV) is a spherical plant virus that has a single 6.3 kb positive strand RNA as a genome. In this study, RNA1 sequence of Flock house virus (FHV) was inserted into the TYMV genome to test whether TYMV can accommodate and express another viral entity. In the resulting construct, designated TY-FHV, the FHV RNA1 sequence was expressed as a TYMV subgenomic RNA. Northern analysis of the Nicotiana benthamiana leaves agroinfiltrated with the TY-FHV showed that both genomic and subgenomic FHV RNAs were abundantly produced. This indicates that the FHV RNA1 sequence was correctly expressed and translated to produce a functional FHV replicase. Although these FHV RNAs were not encapsidated, the FHV RNA having a TYMV CP sequence at the 3’-end was efficiently encapsidated. When an eGFP gene was inserted into the B2 ORF of the FHV sequence, a fusion protein of B2-eGFP was produced as expected. [BMB Reports 2014; 47(6): 330-335]  相似文献   

4.
We have studied the kinetics of dexamethasone induction of mouse mammary tumor virus (MMTV) RNAs and proteins in virus-infected rat XC cells and GR mouse mammary tumor cells. A detectable increase in viral RNA in infected XC cells was present within 10 min after hormone addition, and half-maximal induction was achieved in less than 2 h. The increase in viral RNA concentration was apparent first in nuclear RNA and later in the cytoplasm. Within the first 15 min of induction, only genome-sized RNA (35S, 7.8 kilobases) was present in augmented amounts, whereas the major subgenomic RNA (24S, 3.8 kilobases) did not appear until at least 30 to 60 min postinduction. The sequential appearance of these RNAs, the probable mRNA's for the gag and env proteins, paralleled the order of appearance of the gag and env proteins, respectively, after hormone treatment. An additional species of viral RNA (20S, 2.5 kilobases) was detected during these induction experiments, but the role of this RNA is not known. Both subgenomic RNAs contain sequences derived from both the 5′ and 3′ termini of genomic RNA and are presumably spliced. After dexamethasone induction of infected XC cells, we detected two smaller env-related proteins which were not found in full hormone induction. The functional role of these smaller proteins is not known. A previously reported smaller species of RNA (13S, 1.0 kilobase) did not appear to be induced and was shown to be cellular rather than viral in origin. In the fully induced infected XC and GR mammary tumor cells, the only viral RNAs present were the 35S and 24S RNAs. In addition, mammary tumors contained only these two viral RNAs. Thus, tumor cells appear to contain only the viral RNAs which direct the synthesis of the gag, pol, and env proteins of the virion.  相似文献   

5.
Chikungunya virus (CHIKV; genus Alphavirus, family Togaviridae) has recently caused several major outbreaks affecting millions of people. There are no licensed vaccines or antivirals, and the knowledge of the molecular biology of CHIKV, crucial for development of efficient antiviral strategies, remains fragmentary. CHIKV has a 12 kb positive-strand RNA genome, which is translated to yield a nonstructural (ns) or replicase polyprotein. CHIKV structural proteins are expressed from a subgenomic RNA synthesized in infected cells. Here we have developed CHIKV trans-replication systems, where replicase expression and RNA replication are uncoupled. Bacteriophage T7 RNA polymerase or cellular RNA polymerase II were used for production of mRNAs for CHIKV ns polyprotein and template RNAs, which are recognized by CHIKV replicase and encode for reporter proteins. CHIKV replicase efficiently amplified such RNA templates and synthesized large amounts of subgenomic RNA in several cell lines. This system was used to create tagged versions of ns proteins including nsP1 fused with enhanced green fluorescent protein and nsP4 with an immunological tag. Analysis of these constructs and a matching set of replicon vectors revealed that the replicases containing tagged ns proteins were functional and maintained their subcellular localizations. When cells were co-transfected with constructs expressing template RNA and wild type or tagged versions of CHIKV replicases, formation of characteristic replicase complexes (spherules) was observed. Analysis of mutations associated with noncytotoxic phenotype in CHIKV replicons showed that a low level of RNA replication is not a pre-requisite for reduced cytotoxicity. The CHIKV trans-replicase does not suffer from genetic instability and represents an efficient, sensitive and reliable tool for studies of different aspects of CHIKV RNA replication process.  相似文献   

6.
Time course and mutational analyses were used to examine the accumulation in protoplasts of progeny RNAs of the bipartite Crinivirus, Lettuce infectious yellow virus (LIYV; family Closteroviridae). Hybridization analyses showed that simultaneous inoculation of LIYV RNAs 1 and 2 resulted in asynchronous accumulation of progeny LIYV RNAs. LIYV RNA 1 progeny genomic and subgenomic RNAs could be detected in protoplasts as early as 12 h postinoculation (p.i.) and accumulated to high levels by 24 h p.i. The LIYV RNA 1 open reading frame 2 (ORF 2) subgenomic RNA was the most abundant of all LIYV RNAs detected. In contrast, RNA 2 progeny were not readily detected until ca. 36 h p.i. Mutational analyses showed that in-frame stop codons introduced into five of seven RNA 2 ORFs did not affect accumulation of progeny LIYV RNA 1 or RNA 2, confirming that RNA 2 does not encode proteins necessary for LIYV RNA replication. Mutational analyses also supported that LIYV RNA 1 encodes proteins necessary for replication of LIYV RNAs 1 and 2. A mutation introduced into the LIYV RNA 1 region encoding the overlapping ORF 1B and ORF 2 was lethal. However, mutations introduced into only LIYV RNA 1 ORF 2 resulted in accumulation of progeny RNA 1 near or equal to wild-type RNA 1. In contrast, the RNA 1 ORF 2 mutants did not efficiently support the trans accumulation of LIYV RNA 2. Three distinct RNA 1 ORF 2 mutants were analyzed and all exhibited a similar phenotype for progeny LIYV RNA accumulation. These data suggest that the LIYV RNA 1 ORF 2 encodes a trans enhancer for RNA 2 accumulation.  相似文献   

7.
A transformation-defective (td) deletion mutant of Moloney murine sarcoma virus (td Mo-MSV) and a transforming component termed Mo-MSV 3 were cloned from a stock of clone 3 Mo-MSV. To define the defect of the transforming function, the RNA of td Mo-MSV was compared with those of Mo-MSV 3 and of another transforming variant termed Mo-MSV 124 and with helper Moloney murine leukemia virus (Mo-MuLV). The RNA monomers of td Mo-MSV and Mo-MSV 3 comigrated on polyacrylamide gels and were estimated to be 4.8 kilobases (kb) in length. In agreement with previous analyses, the RNA of Mo-MSV 124 measured 5.5 kb and that of Mo-MuLV measured 8.5 kb. The interrelationships among the viral RNAs were studied by fingerprinting and mapping of RNase T1-resistant oligonucleotides (T1-oligonucleotides) and by identification of T1-oligonucleotides present in hybrids formed by a given viral RNA with cDNA's made from another virus. The nontransforming td Mo-MSV RNA lacked most of the Mo-MSV-specific sequence, i.e., the four 3′-proximal T1-oligonucleotides of the six T1-oligonucleotides that are shared by the Mo-MSV-specific sequences of Mo-MSV 3 and Mo-MSV 124. The remaining two Mo-MSV-specific oligonucleotides identified td Mo-MSV as a deletion mutant of MSV rather than a deletion mutant of Mo-MuLV. td Mo-MSV and Mo-MSV 124 exhibited similar deletions of gag, pol, and env sequences which were less extensive than those of Mo-MSV 3. Hence, td Mo-MSV is not simply a deletion mutant of Mo-MSV 3. In addition to their MSV-specific sequences, all three MSV variants, including td Mo-MSV, shared the terminal sequences probably encoding the proviral long terminal repeat, which differed from their counterpart in Mo-MuLV. This may indirectly contribute to the oncogenic potential of MSV. A comparison of td Mo-MSV sequences with either Mo-MSV 124 or Mo-MSV 3 indicated directly, in a fashion similar to the deletion analyses which defined the src gene of avian sarcoma viruses, that Mo-MuLV-unrelated sequences of Mo-MSV are necessary for transformation. A definition of transformation-specific sequences of Mo-MSV by deletion analysis confirmed and extended previous analyses which have identified Mo-MuLV-unrelated sequences in Mo-MSV RNA and other studies which have described transformation of mouse 3T3 fibroblasts upon transfection with DNAs containing the Mo-MSV-specific sequence.  相似文献   

8.
《Gene》1997,195(2):277-284
We report the cloning, sequence analysis and expression pattern of chGfi, a zinc finger protein (Zfp)-encoding cDNA that was isolated from a cDNA library constructed with RNA from avian erythroblastosis virus (AEV)-transformed primary chicken erythroblasts. The 1387-bp-long chGfi cDNA encodes a full-length 337-amino-acid (aa) protein that contains six zinc fingers (Zf) of the 2Cys+2His class at its C-terminus. Immunoblotting experiments with extracts from bone marrow cells detected a 38-kDa protein that corresponds to the Mr of 38 690 calculated for the protein deduced from chGfi. The chGfi protein is most homologous to the rat Gfi-1 showing a sequence similarity of 92% over the Zf region and only two exchanges within the N-terminal 19 aa that constitute the Gfi-1 repressor domain. Expression of chGfi is only detected in transformed primary erythroblasts, in erythroid cells of the primitive and definitive lineage and in bone marrow cells. chGfi activity does not vary significantly during differentiation of transformed primary erythroblasts of the definitive lineage. No chGfi expression is detected in cells of the myeloid and lymphoid lineages or in a total of nine different organs of adult origin. Our results indicate that chGfi expression is restricted to erythroid cells of the primitive and definitive lineage.  相似文献   

9.
Black beetle virus: messenger for protein B is a subgenomic viral RNA   总被引:16,自引:13,他引:3       下载免费PDF全文
Black beetle virus induces the synthesis of three new proteins, protein A (molecular weight, 104,000), protein α (molecular weight, 47,000), and protein B (molecular weight, 10,000), in infected Drosophila cells. Two of these proteins, A and α, are known to be encoded by black beetle virus RNAs 1 and 2, respectively, extracted from virions. We found that RNA extracted from infected cells directed the synthesis of all three proteins when it was added to a cell-free protein-synthesizing system. When polysomal RNA was fractionated on a sucrose density gradient, the messengers for proteins A and α cosedimented with viral RNAs 1 (22S) and 2 (15S), respectively. However, the messenger for protein B was a 9S RNA (RNA 3) not found in purified virions. Like the synthesis of viral RNAs 1 and 2, intracellular synthesis of RNA 3 was not affected by the drug actinomycin D at concentrations which blocked synthesis of host cell RNA. This indicated that RNA 3 is a virus-specific subgenomic RNA and, therefore, that protein B is a virus-encoded protein.  相似文献   

10.
The genome of avian erythroblastosis virus contains two independently expressed genetic loci (v-erbA and v-erbB) whose activities are probably responsible for oncogenesis by the virus. Both loci are closely related to nucleotide sequences found in the DNA and RNA of chickens and other vertebrates. We have isolated and characterized chicken DNA homologous to v-erbA and v-erbB. The two viral genes are represented by separate domains within chicken DNA (c-erbA and c-erbB), which are separated by a minimum of 12 kilobases (kb) of DNA and may not be linked at all. The nucleotide sequences shared by the viral and cellular erb loci are colinear, but the cellular loci are interrupted by multiple intervening sequences of various lengths. Polyribosomes prepared from normal chicken embryos contain two polyadenylated RNAs transcribed from c-erbA and two transcribed from c-erbB. The evident coding regions of these RNAs represent an unusually small fraction of the lengths of the RNAs, as if the 3′ untranslated domains of the RNAs might be exceptionally large (3–11 kb). These findings indicate that the c-erb loci are normal vertebrate genes rather than genes of cryptic endogenous retroviruses, and that they may have a role in the metabolism of normal cells. It appears that the viral erb genes, like most other retrovirus oncogenes, have been copied from cellular genes. In the viral genome, the two genes are devoid of introns, but they remain independently expressed loci, and they remain colinear with the coding domains of their cellular progenitors.  相似文献   

11.
The SUC2 gene of yeast (Saccharomyces) encodes two forms of invertase: a secreted, glycosylated form, the synthesis of which is regulated by glucose repression, and an intracellular, nonglycosylated enzyme that is produced constitutively. The SUC2 gene has been cloned and shown to encode two RNAs (1.8 and 1.9 kb) that differ at their 5′ ends. The stable level of the larger RNA is regulated by glucose; the level of the smaller RNA is not. A correspondence between the presence of the 1.9 kb RNA and the secreted invertase, and between the 1.8 kb RNA and the intracellular invertase, was observed in glucose-repressed and -derepressed wild-type cells. In addition, cells carrying a mutation at the SNF1 locus fail to derepress synthesis of the secreted invertase and also fail to produce stable 1.9 kb RNA during growth in low glucose. Glucose regulation of invertase synthesis thus is exerted, at least in part, at the RNA level. A naturally silent allele (suc2°) of the SUC2 locus that does not direct the synthesis of active invertase was found to produce both the 1.8 and 1.9 kb RNAs under normal regulation by glucose. A model is proposed to account for the synthesis and regulation of the two forms of invertase: the larger, regulated mRNA contains the initiation codon for the signal sequence required for synthesis of the secreted, glycosylated form of invertase; the smaller, constitutively transcribed mRNA begins within the coding region of the signal sequence, resulting in synthesis of the intracellular enzyme.  相似文献   

12.
We have analyzed Semliki Forest virus defective interfering RNA molecules, generated by serial undiluted passaging of the virus in baby hamster kidney cells. The 42 S RNA genome (about 13 kb 2) has been greatly deleted to generate the DI RNAs, which are heterogeneous both in size (about 2 kb) and sequence content. The DI RNAs offer a system for exploring binding sites for RNA polymerase and encapsidation signals, which must have been conserved in them since they are replicated and packaged. In order to study the structural organization of DI RNAs, and to analyze which regions from the genome have been conserved, we have determined the nucleotide sequences of (1) a 2.3 kb long DI RNA molecule, DI309, (2) 3′-terminal sequences (each about 0.3 kb) of two other DI RNAs, and (3) the nucleotide sequence of 0.4 kb at the extreme 5′ end of the 42 S RNA genome.The DI309 molecule consists of a duplicated region with flanking unique terminal sequences. A 273-nucleotide sequence is present in four copies per molecule. The extreme 5′-terminal nucleotide sequence of the 42 S RNA genome is shown to contain domains that are conserved in the two DI RNAs of known structure: DI309, and the previously sequenced DI301 (Lehtovaara et al., 1981). Here we report which terminal genome sequences are conserved in the DI RNAs, and how they have been modified, rearranged or amplified.  相似文献   

13.
The complete genome sequence of the garlic latent virus (GLV) has been determined. The whole GLV genome consists of 8,353 nucleotides, excluding the 3'-end poly(A)+ tail, and contains six open-reading frames (ORFs). Putative proteins that were encoded by the reading frames contain the motifs that were conserved in carlavirus-specific RNA replicases, NTP-dependent DNA helicases, two viral membrane-bound proteins, a viral coat protein, and a zinc-finger. Overall, the GLV genome shows structural features that are common in carlaviruses. An in vitro translation analysis revealed that the zinc-finger protein is not produced as a transframe protein with the coat protein by ribosomal frameshifting. A Northern blot analysis showed that GLV-specific probes hybridized to garlic leaf RNA fragments of about 2.6 and 1.5 kb long, in addition to the 8.5 kb whole genome. The two subgenomic RNAs might be encapsidated into smaller viral particles. In garlic plants, 700 nm long flexuous rod-shaped virus particles were observed in the immunoelectron microscopy using polyclonal antibodies against the GLV coat proteins.  相似文献   

14.
We have analyzed the structure of OK10-BM virus, an avian acute leukemia virus produced by a bone marrow-derived cell line of macrophage origin, and compared it with that of OK10 AV, an associated virus originally present in the OK10 virus stock. The RNAs of OK10-BM virus and OK10 AV had the same mobility in agarose gels, corresponding to 8.0 to 8.5 kilobases, a size considerably larger than that of the transforming component (5 to 6 kb) of most other avian acute leukemia viruses. Fingerprint analysis showed a close relationship between OK10-BM virus and OK10 AV RNAs. The polypeptide compositions of OK10-BM and OK10 AV viruses were similar except for the envelope glycoproteins. In analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the large envelope glycoprotein of OK10-BM virus migrated at Mr = 78,000 (gp78), whereas OK10 AV had the characteristic 85,000-dalton glycoprotein (gp85) of nondefective avian leukemia viruses. gp78 was weakly labeled with methionine, glycine, proline, or mannose, suggesting that purified OK10-BM virus had reduced amounts of the modified envelope glycoprotein. In cell-free rabbit reticulocyte lysates, OK10-BM virion RNA directed the synthesis of a 200,000-dalton polypeptide (p200), a 180,000-dalton polypeptide (pr180), and a 76,000-dalton polypeptide (pr76), whereas OK10 AV RNA gave rise only to pr180 and pr76, suggesting that p200 may represent an OK10-BM-encoded transforming protein. No biochemical evidence for the presence of an associated helper virus was found in the OK10-BM virus population produced by the macrophage cell line. However, when OK10-BM virus was serially passaged in chicken embryo fibroblasts, a virus having structural properties similar to those of OK10 AV (OK10 AV-specific oligonucleotides and gp85) appeared after three passages. Moreover, nonproducer clones of transformed cells could be readily obtained in OK10-BM virus-infected quail cell cultures. It is thus likely that the bone marrow-derived macrophage cell line produces a transforming virus defective in its env gene and low amounts of an associated helper virus, which upon transfer to fibroblasts is preferentially replicated.  相似文献   

15.
16.
Since Emaraviruses have been discovered in 2007 several new species were detected in a range of host plants. Five genome segments of a novel Emaravirus from mosaic-diseased Eurasian aspen (Populus tremula) have been completely determined. The monocistronic, segmented ssRNA genome of the virus shows a genome organisation typical for Emaraviruses encoding the viral RNA-dependent RNA polymerase (RdRP, 268.2 kDa) on RNA1 (7.1 kb), a glycoprotein precursor (GPP, 73.5 kDa) on RNA2 (2.3 kb), the viral nucleocapsid protein (N, 35.6 kDa) on RNA3 (1.6 kb), and a putative movement protein (MP, 41.0 kDa) on RNA4 (1.6 kb). The fifth identified genome segment (RNA5, 1.3 kb) encodes a protein of unknown function (P28, 28.1 kDa). We discovered that it is distantly related to proteins encoded by Emaraviruses, such as P4 of European mountain ash ringspot-associated virus. All proteins from this group contain a central hydrophobic region with a conserved secondary structure and a hydrophobic amino acid stretch, bordered by two highly conserved positions, thus clearly representing a new group of homologues of Emaraviruses. The virus identified in Eurasian aspen is closely associated with observed leaf symptoms, such as mottle, yellow blotching, variegation and chloroses along veins. All five viral RNAs were regularly detectable by RT-PCR in mosaic-diseased P. tremula in Norway, Finland and Sweden (Fennoscandia). Observed symptoms and testing of mosaic-diseased Eurasian aspen by virus-specific RT-PCR targeting RNA3 and RNA4 confirmed a wide geographic distribution of the virus in Fennoscandia. We could demonstrate that the mosaic-disease is graft-transmissible and confirmed that the virus is the causal agent by detection in symptomatic, graft-inoculated seedlings used as rootstocks as well as in the virus-infected scions used for graft-inoculation. Owing to these characteristics, the virus represents a novel species within the genus Emaravirus and was tentatively denominated aspen mosaic-associated virus.  相似文献   

17.
S R Weiss  H E Varmus  J M Bishop 《Cell》1977,12(4):983-992
The genome of avian sarcoma virus (ASV) contains four known genes: gag, encoding structural proteins of the viral core; pol, encoding the viral RNA-directed DNA polymerase; env, encoding the glycoprotein(s) of the viral envelope; and src, which is responsible for neoplastic transformation of the host cell. We have located these genes on virus-specific RNAs in cells productively infected with both nondefective and defective strains of ASV by using molecular hybridization with DNAs complementary to specific portions of the ASV genome.The cytoplasm of cells producing nondefective ASV contains three species of polyadenylated virus-specific RNA, each of which has chemical polarity identical to that of the viral genome. The largest species has a molecular weight of 3.3 × 106 daltons and a sedimentation coefficient of 38S, encodes all four viral genes, and is probably identical to the viral genome. A second species has a molecular weight of 1.8 × 106 daltons and a sedimentation coefficient of 28S, and encodes the 3′ half of the viral genome, including env, src and a genetically silent region known as “c.” The smallest species has a molecular weight of 1.2 × 106 daltons and a sedimentation coefficient of 21S, and encodes only src and “c.” All three species of virus-specific RNA contain nucleotide sequences at least partially homologous to a sequence of 101 nucleotides found at the extreme 5′ end of the ASV genome. This sequence may not be present in the portions of the ASV genome which encode the 28S and 21S virus-specific RNAs, and hence may be joined to these RNAs during their maturation from precursor molecules.The size and genetic composition of virus-specific RNAs in cells producing defective deletion mutants reflect the nature of the deletion. Deletions of either src or env eliminate the 28S virus-specific RNA, leaving a 21S RNA (which contains either env and “c” in the case of src deletions or src and “c” in the case of env deletions) and a 35S RNA which is probably identical to the viral genome.Based on these and related results, we propose a model for viral gene expression which conforms to previous suggestions that eucaryotic cells initiate translations only at the 5′ termini of messenger RNAs.  相似文献   

18.
本文利用同位素代谢标记在HEV感染85~10.5,6.5~7.5h分别检测到1及2个亚基因组RNA,而感染21h后及在成熟的病毒颗粒内未能检测到亚基因组RNA。通过杂交实验,发现HEV的亚基因组RNA具有典型的共3′端的半套式结构,且基因组RNA与亚基因组RNA的5′端不存在共同的引导序列。通过紫外转录图谱发现HEV的亚基因组RNA是通过独立转录的方式产生的。利用引物延伸反应发现两种亚基因组RNA的转录起始位点分别位于RNA聚合酶区及非结构区、结构区的基因间序列。  相似文献   

19.
Influenza A virus (IAV) defective RNAs are generated as byproducts of error-prone viral RNA replication. They are commonly derived from the larger segments of the viral genome and harbor deletions of various sizes resulting in the generation of replication incompatible viral particles. Furthermore, small subgenomic RNAs are known to be strong inducers of pattern recognition receptor RIG-I-dependent type I interferon (IFN) responses. The present study identifies a novel IAV-induced defective RNA derived from the PB2 segment of A/Thailand/1(KAN-1)/2004 (H5N1). It encodes a 10 kDa protein (PB2) sharing the N-terminal amino acid sequence of the parental PB2 protein followed by frame shift after internal deletion. PB2 induces the expression of IFNβ and IFN-stimulated genes by direct interaction with the cellular adapter protein MAVS, thereby reducing viral replication of IFN-sensitive viruses such as IAV or vesicular stomatitis virus. This induction of IFN is completely independent of the defective RNA itself that usually serves as pathogen-associated pattern and thus does not require the cytoplasmic sensor RIG-I. These data suggest that not only defective RNAs, but also some defective RNA-encoded proteins can act immunostimulatory. In this particular case, the KAN-1-induced defective RNA-encoded protein PB2 enhances the overwhelming immune response characteristic for highly pathogenic H5N1 viruses, leading to a more severe phenotype in vivo.  相似文献   

20.
《Seminars in Virology》1997,8(2):101-111
Naturally occurring defective interfering RNAs have been found in 4 of 14 coronavirus species. They range in size from 2.2 kb to approximately 25 kb, or 80% of the 30-kb parent virus genome. The large DI RNAs do not in all cases appear to require helper virus for intracellular replication and it has been postulated that they may on their own function as agents of disease. Coronavirus DI RNAs appear to arise by internal deletions (through nonhomologous recombination events) on the virus genome or on DI RNAs of larger size by a polymerase strand-switching (copy-choice) mechanism. In addition to their use in the study of virus RNA replication and virus assembly, coronavirus DI RNAs are being used in a major way to study the mechanism of a high-frequency, site-specific RNA recombination event that leads to leader acquisition during virus replication (i.e., the leader fusion event that occurs during synthesis of subgenomic mRNAs, and the leader-switching event that can occur during DI RNA replication), a distinguishing feature of coronaviruses (and arteriviruses). Coronavirus DI RNAs are also being engineered as vehicles for the generation of targeted recombinants of the parent virus genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号