首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five families of variable region genes of mouse kappa chains were analyzed by Southern blot hybridization to determine their relative chromosomal map positions. Map positions were deduced by Vk gene deletion from antibody-producing cells expressing upstream Vk genes and retention in cells expressing downstream genes. The Vk regions expressed in the myelomas M0PC167, MPC11, M0PC21 and ABPC20 are members of Vk families exhibiting one, three, six and six major germline hybridization bands respectively. The gene order of the five families in germline DNA was found to be VM167-VM11-(VM21, VA20)-VABE8-Jk-Ck. As expected in a deletion model of immunoglobulin gene rearrangement, a sequence located just 5' of J1 in germline DNA was found to be absent from some antibody producing cells which had not retained any germline Ck genes. However, other cell lines contained this sequence in rearranged contexts, suggesting that any deletion model of immunoglobulin V-J joining, as well as V gene mapping, must take into account the possibilities of stepwise rearrangements and reintegration of "deleted" DNA.  相似文献   

2.
Immune function in higher vertebrates is mediated primarilyby multimeric glycoproteins found in the serum and on the surfacesof lymphoid cells. These molecules possess common structuralfeatures suggesting that they belong to a supergene family whichmay have originated from a common ancestral gene. Some multigenicmembers of the supergene family undergo unique forms of chromosomalrearrangement during somatic development. We have identifiedimmunoglobulin heavy chainvariable region (VH) homologs in speciesrepresenting critical points in the vertebrate radiation, examinedtheir nucleotide sequences and found high degrees of organizationalhomology as well as localized regions of extended nucleotide(and amino acid) sequence identity with mammalian VH genes.The unexpected high degree of nucleotide sequence identity suggeststhat within this multigene family, selection may be operatingat both the DNA and polypeptide levels.Using several differentapproaches, the VH gene families in lower vertebrates have beenshown to be remarkably complex, discounting the possibilitythat a reduced number of germline genes accounts for the apparentlyrestricted natureof lower vertebrate immune responses. The lowervertebrate germline VH genes possess prototypic recombinationsignal sequences, implicated in the somatic reorganization ofmammalian immunoglobulin variable region genes, and segmentalreorganizationresembling that seen in mammals has been observed in an elasmobranch.The detection of a recombination element flanked by short, directrepeats within the intervening sequence of one reptilian VHgene suggests that these sequences may be mobile, perhaps functioningoutside of the immunoglobulin loci in other developmental processes.The complex nature of the variable region gene families andtheir capacity to undergo structural change during somatic developmentsuggest that unique genetic mechanisms may govern their evolutionarystabilization and diversification.  相似文献   

3.
Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.  相似文献   

4.
S Weiss  G E Wu 《The EMBO journal》1987,6(4):927-932
Somatic point mutations are usually found in the coding and flanking regions of functionally and aberrantly rearranged immunoglobulin variable region gene segments. Mutations in the unrearranged V gene segments of myelomas or hybridomas have not been described so far. We have cloned and sequenced unrearranged V lambda gene segments from several cell lines. There were no nucleotide changes in four unrearranged V lambda segments: one V lambda 1 from a lambda 3-producing hybridoma and one V lambda 2 from a lambda 1-producing myeloma (J558) and two V lambda 2 from a kappa-producing myeloma (P3X63). However, we found somatic mutations in the unrearranged V lambda segments from the lambda 2-producing myeloma MOPC315. The unrearranged V lambda 1 gene segment had two mutations in the coding region and the unrearranged V lambda 2 had one mutation in the 3' flanking region. We also cloned and sequenced the unrearranged J lambda and C lambda gene segments of MOPC315 and found no sequence alterations. This is consistent with the notion that the overall mutation rate is not higher in this cell line. Therefore, we suggest that the somatic hypermutation system can use unrearranged V gene segments as substrates. The extensive sequencing required for this work revealed a number of errors in the reported nucleotide sequences of the Ig lambda locus in BALB/c mice.  相似文献   

5.
The series of studies on the human K light chain genes of the various subgroups is concluded by this report on the isolation and nucleotide sequence determination of a functional VKIV gene (abbreviations ref. 1) and its germline counterpart. The rearranged gene which stems from a lymphoid cell line and the germline gene differ in four nucleotides which can be attributed to somatic mutations; three of the mutations are clustered in CDR3. The germline gene regions of two unrelated individuals were identical over a stretch of 1267 bp. By hybridization experiments it is shown that the human K locus contains only one VKIV gene. In 16 lymphoid cell lines studied here, the VKIV gene is frequently deleted or aberrantly rearranged which may be a consequence of peculiarities of its function and/or its structural organization.  相似文献   

6.
We have analyzed several closely related members of the gene family encoding the variable regions of human immunoglobulin kappa light chains (Vκ genes). Two of these genes differ at a single nucleotide out of 940 bases sequenced, and are believed to be alleles of a locus called HK101. This substitution results in an amino acid replacement in the first complementarity-determining region of the kappa chain. We also compared the structures of two nonallelic human Vκ loci (HK101 and HK137) and found a high degree of sequence homology over a region at least 13.5 kb long. This long block of homology indicates that these two loci arose from a recent gene duplication. The DNA sequences of these two nonallelic Vκ genes exhibit a very unusual distribution of nucleotide substitutions. Seven of the ten substitutions found among 940 bases are clustered in a 39 base stretch encoding the first complementarity-determining region and the second framework region of the protein. We suggest that this cluster of substitutions was generated by a gene conversion in which a small segment of one gene was replaced with the homologous segment from another Vκ gene.  相似文献   

7.
The identification of the genes that make up rearranged immunoglobulin genes is critical to many studies. For example, the enumeration of mutations in immunoglobulin genes is important for the prognosis of chronic lymphocytic leukemia, and this requires the accurate identification of the germline genes from which a particular sequence is derived. The immunoglobulin heavy-chain variable (IGHV) gene repertoire is generally considered to be highly polymorphic. In this report, we describe a bioinformatic analysis of germline and rearranged immunoglobulin gene sequences which casts doubt on the existence of a substantial proportion of reported germline polymorphisms. We report a five-level classification system for IGHV genes, which indicates the likelihood that the genes have been reported accurately. The classification scheme also reflects the likelihood that germline genes could be incorrectly identified in mutated VDJ rearrangements, because of similarities to other alleles. Of the 226 IGHV alleles that have previously been reported, our analysis suggests that 104 of these alleles almost certainly include sequence errors, and should be removed from the available repertoire. The analysis also highlights the presence of common mismatches, with respect to the germline, in many rearranged heavy-chain sequences, suggesting the existence of twelve previously unreported alleles. Sequencing of IGHV genes from six individuals in this study confirmed the existence of three of these alleles, which we designate IGHV3-49*04, IGHV3-49*05 and IGHV4-39*07. We therefore present a revised repertoire of expressed IGHV genes, which should substantially improve the accuracy of immunoglobulin gene analysis.  相似文献   

8.
Autoantibodies against thymocytes and RBC may contribute to the pathophysiology of homozygous viable motheaten (mev) autoimmune disease. Whether the production of these autoantibodies in mev mouse results from polyclonal nonspecific B cell activation or specific Ag-driven stimulation is not known. To understand the mechanisms involved in the induction of antithymocyte autoantibody response in mev mouse, we have studied the fine antigenic specificity, structure, and origin of three antithymocyte autoantibodies derived from mev splenic B cell hybridomas. Western blot analysis showed that these mAb bind to polypeptides of 33 and 105 kDa present in RBC and thymocytes, respectively. Additional specificities for the epitopes present in other polypeptides distinguished these three autoantibodies. Northern hybridization and flow microfluorimetry analysis indicated that these hybridomas are derived from the Ly1+ B cell subset. These autoreactive Ly-1 B cell hybridomas, chosen on the basis of their specificity, expressed L chain V genes from a single VK family (VK9) and VH genes from J606 and S107 families. Hybridomas UN34.11 and UN42.5 expressed the VK9 gene identical to that used by peritoneal Ly1+ B cells from various mouse strains and malignant B lymphoma cells secreting anti-mouse RBC treated with proteolytic enzyme bromelin and anti-SRBC antibodies. The third hybridoma, S2-14.2, used a VK9 gene identical to that expressed by MOPC41. None of the VK genes encoding these autoantibodies showed any somatic mutations. In the case of VH genes, the two hybridomas UN42.5 and S2-14.2 derived from two separate fusions, used identical VH genes from the J606 family. The third hybridoma UN34.11 used unmutated V11 germline VH gene, a member of the S107 family. Southern hybridizations, using oligonucleotide probes specific for CDR1 and CDR2, showed that the VH genes encoding the J606 autoantibodies were derived from a germline gene found in the 6.7-kb fragment of EcoRI-digested germline DNA. This germline VH gene is distinct from VH22.1 germline gene that codes for antigalactan antibodies. Sequence analysis of this gene showed perfect homology with the rearranged VH genes confirming the lack of somatic mutations. Thus, our data demonstrate that antithymocyte antibody response occurring in mev mouse is polyclonal and it involves Ly-1 B cells expressing unmutated germline VH and VK genes. These results indicate that antigen driven stimulation may not play an important role in the induction of anti-thymocyte antibody response in mev mouse.  相似文献   

9.
The rearranged lambda 2 gene of the mouse plasmacytoma cell line MOPC315 has been cloned and sequenced. A comparison of its sequence with the sequence of the unrearranged (germ-line) V, J and C gene segments shows that the sequences of the V gene segments differ at six positions. The sequence of the J and C gene segments remained unchanged. These results add support to the hypothesis that somatic mutations occur in immunoglobulin in genes and that these mutations do not involve the C gene segment. The degree of homology of the elements of the lambda 2 gene with those of the lambda 1 gene and C lambda 3 and C lambda 4 gene fragments suggest a pathway of evolution by gene duplication of the immunoglobulin lambda light chain locus. According to this scheme the original structure V0-J0C0 gave rise to a structure V0-J1C1-J11C11 by duplication of the J0C0 region. A second duplication encompassing the whole region resulted in the present structure: V1-J3C3-J1C1/V2-J2C2-J4C4.  相似文献   

10.
To assess the relative contributions of germline versus somatically mutated genes in the human immune system, we have examined the size of the kappa light-chain variable region (Vκ) gene pool. Two cloned kappa subgroup 1 (Vκ1) gene probes detected the same family of 15 to 20 crosshybridizing restriction fragments in human DNA, whereas flanking region probes detected fewer hybridizing fragments. Most of the hybridizing bands represent single-copy genes, as judged by a “gene titration” experiment. Furthermore, the number of hybridization bands is a good estimate of the haploid gene number, since we observed little polymorphism of restriction sites in the Vκ locus of eight unrelated people. A cloned Vκ3 probe hybridized to essentially the same 15–20 genes in human DNA as the Vκ1 probes. These results strongly suggest that a discrete family of 15–20 genes constitutes a large proportion of the V genes from three of the four Vκ subgroups. The small number of Vκ genes in the human genome supports the idea that somatic mutation plays a major role in the origin of antibody diversity in man.  相似文献   

11.
The relative contributions of germline gene variation and somatic mutation to immunoglobulin diversity were studied by comparing germline gene sequences with their rearranged counterparts for the mouse VH, V kappa, and V lambda genes. The mutation rate at the amino acid level was estimated to be 7.0% in the first and second complementarity- determining regions (CDRs) and 2.0% in the framework regions (FRs). The difference in the mutation rate at the nucleotide level between the CDRs and FRs was of the same order of magnitude as that for the amino acid level. Analysis of amino acid diversity or nucleotide diversity indicated that the contribution of somatic mutation to immunoglobulin diversity is approximately 5%. However, the contribution of somatic mutation to the number of different amino acid sequences of immunoglobulins is much larger than that estimated by the analysis of amino acid diversity, and more than 90% of the different immunoglobulins seem to be generated by somatic mutation. Examination of the pattern of nucleotide substitution has suggested that clonal selection after somatic mutation may not be as strong as generally believed.   相似文献   

12.
P Early  H Huang  M Davis  K Calame  L Hood 《Cell》1980,19(4):981-992
We have determined the sequences of separate germline genetic elements which encode two parts of a mouse immunglobulin heavy chain variable region. These elements, termed gene segments, are heavy chain counterparts of the variable (V) and joining (J) gene segments of immunoglobulin light chains. The VH gene segment encodes amino acids 1-101 and the JH gene segment encodes amino acids 107-123 of the S107 phosphorylcholine-binding VH region. This JH gene segment and two other JH gene segments are located 5' to the mu constant region gene (Cmu) in germline DNA. We have also determined the sequence of a rearranged VH gene encoding a complete VH region, M603, which is closely related to S107. In addition, we have partially determined the VH coding sequences of the S107 and M167 heavy chain mRNAs. By comparing these sequences to the germline gene segments, we conclude that the germline VH and JH gene segments do not contain at least 13 nucleotides which are present in the rearranged VH genes. In S107, these nucleotides encode amino acids 102-106, which form part of the third hypervariable region and consequently influence the antigen-binding specificity of the immunoglobulin molecule. This portion of the variable region may be encoded by a separate germline gene segment which can be joined to the VH and JH gene segments. We term this postulated genetic element the D gene segment, referring to its role in the generation of heavy chain diversity. Essentially the same noncoding sequences are found 3' to the VH gene segment and as inverse complements 5' to two JH gene segments. These are the same conserved nucleotides previously found adjacent to light chain V and J gene segments. Each conserved sequence consists of blocks of seven and ten conserved nucleotides which are separated by a spacer of either 11 or 22 nonconserved nucleotides. The highly conserved spacing, corresponding to one or two turns of the DNA helix, maintains precise spatial orientations between blocks of conserved nucleotides. Gene segments which can join to one another (VK and JK, for example) always have spacers of different lengths. Based on these observations, we propose a model for variable region gene rearrangement mediated by proteins which recognize the same conserved sequences adjacent to both light and heavy chain immunoglobulin gene segments.  相似文献   

13.
The immune response in BALB/c mice to phosphorylcholine is highly restricted in its heterogeneity. Of the 19 immunoglobulins binding phosphorylcholine for which complete VH-segment amino acid sequences have been determined, 10 employ a single sequence, denoted T15 after the prototype VH sequence of this group of antibodies. The remaining 9 of these VH segments are variants differing by 1 to 8 residues from the T15 sequence. Using a cloned VH cDNA probe complementary to the T15 sequence, we isolated from a mouse sperm genomic library clones corresponding to four VH gene segments that by DNA sequence analysis are >85% homologous to one another. These four VH gene segments have been denoted the T15 VH gene family. These VH gene segments are most, if not all, of the germline VH gene segments that could encode the VH sequences of antibodies that bind phosphorylcholine. One of these four genes contains the T15-VH-coding sequence. When the T15-family VH gene segments were compared with the complete VH protein sequences of 19 hybridoma and myeloma immunoglobulins that bind phosphorylcholine, several striking conclusions could be drawn. First, all of these VH regions must have arisen from the germline T15 VH gene segment. Thus virtually the entire immune response to phosphorylcholine is derived from a single VH-coding sequence. Nine of the 19 VH regions were variants differing from the T15-VH-coding sequence and, accordingly, must have arisen by a mechanism of somatic diversification. Second, the variants appear to be generated by a somatic mutation mechanism. They cannot be explained by recombination or gene conversion among members of the T15 gene family. Third, somatic mutation is correlated with the class of the antibody. All of the somatic variation is found in the VH regions derived from antibodies of the IgA and IgG classes. The IgM molecules express the germline T15 VH gene segment exclusively.  相似文献   

14.
In systemic lupus erythematosus (SLE) it has been hypothesized that self-reactive B cells arise from virgin B cells that express low-affinity, nonpathogenic germline V genes that are cross-reactive for self and microbial antigens, which convert to high-affinity autoantibodies via somatic hypermutation. The aim of the present study was to determine whether the VH family repertoire and pattern of somatic hypermutation in germinal centre (GC) B cells deviates from normal in SLE. Rearranged immunoglobulin VH genes were cloned and sequenced from GCs of a SLE patient's spleen. From these data the GC V gene repertoire and the pattern of somatic mutation during the proliferation of B-cell clones were determined. The results highlighted a bias in VH5 gene family usage, previously unreported in SLE, and under-representation of the VH1 family, which is expressed in 20–30% of IgM+ B cells of healthy adults and confirmed a defect in negative selection. This is the first study of the splenic GC response in human SLE.  相似文献   

15.
 In mouse and human, generation of combinatorial diversity through use of different heavy and light chain variable region genes in immunoglobulin rearrangements can be a major contributor to the primary antibody repertoire. In rabbits, the contribution of the combinatorial mechanism to heavy chain diversity is minimal, as only a few Igh-V genes are rearranged and expressed. To investigate the contribution of combinatorial diversity toward generation of the rabbit Vκ repertoire, we constructed five genomic libraries from rabbit kidney DNA and 1 cDNA library from the bone marrow of a 1-day-old rabbit using a series of polymerase chain reaction-based strategies. Our analyses indicate that most of the sequences that we recovered from our libraries belong to a single family and some are extremely similar. The actual number of germline Igk-V genes is potentially greater than our conservative estimate of at least 39, 28 of which we found expressed as mRNA. The germline Igk-V genes display different lengths of the coding region 3′ of Cys 88 ranging from 7 to 12 amino acids, resulting in CDR3 length heterogeneity among functional VκJκ sequences ranging from 8 to 15 amino acids. Some of the VκJκ junctions had N and P nucleotide additions. Thus, in contrast to limited combinatorial diversity of its heavy chain, the rabbit can draw upon a diverse set of germline Igk-V genes. The κ light chain has the potential to be a major contributor toward generation of the antibody specificities of the rabbit pre-immune repertoire. Received: 14 April 1999 / Revised: 8 June 1999  相似文献   

16.
In this study we investigate the molecular genetic basis for VHa- Ig. Knowing that the expression of VHa allotype Ig is suppressed by neonatal injection of rabbits with anti-VHa allotype antibody, and that the decreased level of VHa allotype Ig, VHa+, in the suppressed rabbits is compensated for by an increase in VHa- Ig, we determined the nucleotide sequences of 41 VDJ genes from a2/a2 rabbits neonatally suppressed for the expression of a2 Ig. We compared these nucleotide sequences to each other and identified two groups of VH sequences. We predict that the molecules of each group are encoded by one germline VH gene. Inasmuch as VHa+ Ig is encoded predominantly by one germline VH gene, VH1, it appears that more than 95% of the VDJ repertoire of rabbits may be encoded by as few as three germline VH genes. A genomic VDJ gene whose VH sequence was similar to those of group I molecules was expressed in vitro and was shown by ELISA to encode molecules of the VHa- allotype, y33. Analysis of the D regions in the VDJ gene indicated that germline D2b and D3 gene segments were preferentially used in the VDJ gene rearrangement. A comparison of sequences of D regions of the 41 VDJ gene rearrangements in 3-, 6-, and 9-wk-old rabbits to sequences of germline D gene segments showed an accumulation of mutations in the D region. Inasmuch as we have previously shown that V regions of rabbit VDJ genes are diversified, in part, by somatic gene conversion, it appears now that rabbit VDJ genes diversify by a combination of somatic mutation and somatic gene conversion.  相似文献   

17.
G E Wu  N Hozumi  H Murialdo 《Cell》1983,33(1):77-83
We have studied two derivatives of the IgA (lambda 2) secreting myeloma cell line MOPC315:MOPC315.26, which produces and secretes a lambda 2 light chain, and MOPC315.37, which produces but does not secrete the lambda 2 chain. It has been reported that the only alteration in the MOPC315-37 lambda 2 chain is located in the variable region (Mosmann and Williamson, (1980) Cell 20, 283-292). In order to determine the nature of this alteration, we cloned the fragment of the chromosome containing the rearranged lambda 2 gene from both the nonsecreting variant MOPC315-37 and the normal lambda 2-secreting parent MOPC315-26 and determined their nucleotide sequence. We found that the nucleotide sequences coding for the leader peptide and for the constant region of the lambda 2 chain were identical in the secretor and nonsecretor. The sequences of the variable region differed at a single base pair corresponding to the first nucleotide in the codon for amino acid number 15. MOPC315-26 has a G in this position creating the codon GGT which codes for glycine, and MOPC315-37 has a C in this position creating the codon CGT which codes for arginine. Thus, we have demonstrated that a single amino acid substitution of a neutral amino acid, glycine, for a positively charged amino acid, arginine, results in the failure of a protein to be secreted.  相似文献   

18.
Using CD19 B-cell selection and polymerase chain reaction-amplified cDNA libraries, we analyzed the peripheral immunoglobulin heavy chain variable repertoire of three healthy adult donors. Here we report that most of the CD19+ circulating B cells expressed unmutated V H-D-JH rearrangements. By specific V H family hybridization, we show that V H gene family utilization in the periphery roughly corresponds to the complexity of these families in the germline and appears to be relatively constant among the analyzed subjects. However, sequence data of clones picked at random from one IgM cDNA library reveals that in spite of this random utilization, the V H gene expression in naive circulating B cells is highly biased towards the expression of a limited set of V H genes. As previously reported by others, this restricted mechanism is also found for the D and J H segments.The nucleotide sequence data reported in this paper have been submitted to the GenBank/EMBL nucleotide sequence database and have been assigned the accession numbers Z47213-Z47243 and Z47349  相似文献   

19.
The cynomolgus macaque, Macaca fascicularis, is frequently used in immunological and other biomedical research as a model for man; understanding it's antibody repertoire is, therefore, of fundamental interest. The expressed variable-region gene repertoire of a single M. fascicularis, which was immune to the Ebola virus, was studied. Using 5′ rapid amplification of cDNA ends with immunoglobulin (Ig)G-specific primers, we obtained 30 clones encoding full-length variable, diversity, and joining domains. Similar to the human VH repertoire, the M. fascicularis repertoire utilized numerous immunoglobulin heavy variable (IGHV) gene fragments, with the VH3 (41%), VH4 (39%), and VH1 (14%) subgroups used more frequently than the VH5 (3.9%) or VH7 (1.7%) subgroups. Diverse immunoglobulin heavy joining (IGHJ) fragments also appeared to be utilized, including a putative homolog of JH5β gene segment identified in the related species Macaca mulatta, Rhesus macaque, but not in humans. Although the diverse V region genes in the IgG antibody repertoire of M. fascicularis had likely undergone somatic hypermutations (SHMs), they nevertheless showed high nucleotide identity with the corresponding human germline genes, 80–89% for IGHV and 72–92% for IGHJ. M. fascicularis and human VH genes were also similar in other aspects: length of complementarity-determining regions and framework regions, and distribution of consensus sites for SHMs. Finally, we demonstrated that monoclonal antibodies (mAbs) specific for an Ebola protein could be obtained from M. fascicularis tissue samples by phage display technology. In summary, the study provides new insight into the M. fascicularis V region gene repertoire and further supports the idea that macaque-derived mAbs may be of therapeutic value to humans.  相似文献   

20.
Human cord blood cell-derived IgM antibodies are important for the neonate immune responses and construction of germline-based immunoglobulin libraries. Several previous studies of a relatively small number of sequences found that they exhibit restrictions in the usage of germline genes and in the diversity of the variable heavy chain complementarity determining region 3 compared to adults. To further characterize such restrictions on a larger scale and to compare the early B-cell diversity to adult IgM repertoires, we performed 454 sequencing and IMGT/HighV-QUEST analysis of cord blood IG libraries from two babies and determined germline gene usage, V-D-J rearrangement, VHCDR3 diversity, and somatic mutations to characterize human neonate repertoire. Most of the germline subgroups were identified with frequencies comparable to those present in the adult IgM repertoire except for the IGHV1-2 gene that was preferentially expressed in the cord blood cells. The gene usage diversity contributed to 1,430 unique IGH V-D-J rearrangement patterns while the exonuclease trimming and N region addition at the V-D-J junctions along with gene diversity created a wide range of VHCDR3 with different lengths and sequence variability. We observed a lower degree of somatic mutations in the CDR and framework regions of antibodies from cord blood cells compared to adults. These results provide insights into the characteristics of human cord blood antibody repertoires, which have gene usage diversity and VHCDR3 lengths similar to that of the adult IgM repertoire but differ significantly in some of the gene usages, V-D-J rearrangements, junctional diversity, and somatic mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号