首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A split UV light dose procedure was used in Escherichia coli to induce an SOS function, RecA protein amplification, which was measured by an immunoradiometric assay. The SOS system was partially induced after the first UV irradiation, and the inducing effects of subsequent identical UV doses were quantified. Variations in the inducing effects of successive UV doses were related to modulations of the SOS signal level during SOS induction. A reduction in the level of SOS signal was found after 20 min in the wild-type strain, hypothesized to result from negative control of repair functions. A few DNA repair mutants were tested by the same procedure; the uvrA, recF, and umuC genes were involved in SOS induction control, but we found differences in their respective kinetics of expression. On the contrary, in a recB mutant, only a slight effect was obtained on this control.  相似文献   

2.
The RecA protein of Escherichia coli is required for SOS-induced mutagenesis in addition to its recombinational and regulatory roles. We have suggested that RecA might participate directly in targeted mutagenesis by binding preferentially to the site of the DNA damage (e.g. pyrimidine dimer) because of its partially unwound nature; DNA polymerase III will then encounter RecA-coated DNA at the lesion and might replicate across the damaged site more often but with reduced fidelity. In support of this proposal, we have found that the phenotype of wild-type and mutant RecA for mutagenesis correlates with capacity to bind to double-stranded DNA. Wild-type RecA binds more efficiently to ultraviolet (u.v.)-irradiated, duplex DNA than to non-irradiated DNA. The RecA441 (Tif) protein that is constitutive for mutagenesis binds extremely well to double-stranded DNA with no lesions, whereas the RecA430 protein that is defective in mutagenesis binds poorly even to u.v.-irradiated DNA. The RecA phenotype also correlates with capacity to use duplex DNA as a cofactor for cleavage of the LexA repressor protein for SOS-controlled operons. Wild-type RecA provides efficient cleavage of LexA only with u.v.-irradiated duplex DNA; RecA441 cleaves well with non-irradiated DNA; RecA430 gives very poor cleavage even with u.v.-irradiated DNA. We conclude that the interaction of RecA with damaged double-stranded DNA is likely to be a critical component of SOS mutagenesis and to define a pathway for the LexA cleavage reaction as well.  相似文献   

3.
Studies of the interaction of RecA protein with DNA   总被引:1,自引:0,他引:1       下载免费PDF全文
Ethidium fluorescence assays were adapted for the rapid and sensitive detection of precA; in addition, fluorescence measurements on binding precA to linear, OC and CCC PM2 DNAs have enabled the stoichiometry of precA binding as well as the precA-induced unwinding angle of DNA to be determined. The stoichiometry of binding was independently confirmed by sedimentation analysis to be one precA molecule per 3 bp. The unwinding angle was also independently confirmed by measurements of fluorescence changes induced by the binding of precA to CCC DNA which was relaxed by topoisomerase to give a precA-induced unwinding angle of 51 degrees. Electron microscopy of OC DNA molecules which bound nonsaturating amounts of precA revealed that the length increase in DNA due to precA was approximately 55%. Finally, examination of negatively stained precA complexes with a variety of linear DNAs showed that the minor groove is the primary site of interaction for this protein.  相似文献   

4.
Thermostable RecA protein (ttRecA) from Thermus thermophilus HB8 showed strand exchange activity at 65 degrees C but not at 37 degrees C, although nucleoprotein complex was observed at both temperatures. ttRecA showed single-stranded DNA (ssDNA)-dependent ATPase activity, and its activity was maximal at 65 degrees C. The kinetic parameters, K(m) and kcat, for adenosine triphosphate (ATP) hydrolysis with poly(dT) were 1.4 mM and 0.60 s-1 at 65 degrees C, and 0.34 mM and 0.28 s-1 at 37 degrees C, respectively. Substrate cooperativity was observed at both temperatures, and the Hill coefficient was about 2. At 65 degrees C, all tested ssDNAs were able to stimulate the ATPase activity. The order of ATPase stimulation was: poly(dC) > poly(dT) > M13 ssDNA > poly(dA). Double-stranded DNAs (dsDNA), poly(dT).poly(dA) and M13 dsDNA, were unable to activate the enzyme at 65 degrees C. At 37 degrees C, however, not only dsDNAs but also poly(dA) and M13 ssDNA showed poor stimulating ability. At 25 degrees C, poly(dA) and M13 ssDNA gave circular dichroism (CD) peaks at around 192 nm, which reflect a particular structure of DNA. The conformation was changed by an upshift of temperature or binding to Escherichia coli RecA protein (ecRecA), but not to ttRecA. The dissociation constant between ecRecA and poly(dA) was estimated to be 44 microM at 25 degrees C by the change in the CD. These observations suggest that the capability to modify the conformation of ssDNA may be different between ttRecA and ecRecA. The specific structure of ssDNA was altered by heat or binding of ecRecA. After this alteration, ttRecA and ecRecA can express their activities at each physiological temperature.  相似文献   

5.
The DNA damage-inducible SOS response of Escherichia coli includes an error-prone translesion DNA replication activity responsible for SOS mutagenesis. In certain recA mutant strains, in which the SOS response is expressed constitutively, SOS mutagenesis is manifested as a mutator activity. Like UV mutagenesis, SOS mutator activity requires the products of the umuDC operon and depends on RecA protein for at least two essential activities: facilitating cleavage of LexA repressor to derepress SOS genes and processing UmuD protein to produce a fragment (UmuD') that is active in mutagenesis. To determine whether RecA has an additional role in SOS mutator activity, spontaneous mutability (tryptophan dependence to independence) was measured in a family of nine lexA-defective strains, each having a different recA allele, transformed or not with a plasmid that overproduces either UmuD' alone or both UmuD' and UmuC. The magnitude of SOS mutator activity in these strains, which require neither of the two known roles of RecA protein, was strongly dependent on the particular recA allele that was present. We conclude that UmuD'C does not determine the mutation rate independently of RecA and that RecA has a third essential role in SOS mutator activity.  相似文献   

6.
Summary We have used a sensitive gel electrophoresis assay to detect the products of Escherichia coli RecA protein catalysed strand exchange reactions between gapped and duplex DNA molecules. We identify structures that correspond to joint molecules formed by homologous pairing, and show that joint molecules are converted by RecA protein into heteroduplex monomers by reciprocal strand exchanges. However, strand exchanges only occur when there is a 3-terminus complementary to the single stranded DNA in the gap. In the absence of a complementary free end, the two DNA molecules pair and short heteroduplex regions are formed by localised interwinding.  相似文献   

7.
8.
The RecA protein of Escherichia coli binds specifically to acidic phospholipids such as cardiolipin and phosphatidylglycerol. This binding appears to be affected by the presence of divalent cations such as Ca2+ and Mg2+. The interaction leads to the inhibition of RecA binding to at least two different conformations of DNA, single-stranded DNA and left-handed Z-DNA, thus suggesting that the phospholipids interact at the DNA-binding site of the RecA protein. Inclusion of a nucleotide cofactor [adenosine 5'-O-(gamma-thiotriphosphate)] in the reactions did not prevent the inhibition of DNA-binding activities of RecA protein by the phospholipids. The interaction of RecA protein with cardiolipin and phosphatidylglycerol, which represent two of the three major phospholipids of the E. coli membrane, may be physiologically important, as it provides a possible mechanism for the RecA-membrane association during the SOS response. These observations raise the possibility that the Z-DNA-binding activity of RecA protein is merely a manifestation of its phospholipid-binding property.  相似文献   

9.
The unresolved mechanism by which a single strand of DNA recognizes homology in duplex DNA is central to understanding genetic recombination and repair of double-strand breaks. Using stopped-flow fluorescence we monitored strand exchange catalyzed by E. coli RecA protein, measuring simultaneously the rate of exchange of A:T base pairs and the rates of formation and dissociation of the three-stranded intermediates called synaptic complexes. The rate of exchange of A:T base pairs was indistinguishable from the rate of formation of synaptic complexes, whereas the rate of displacement of a single strand from complexes was five to ten times slower. This physical evidence shows that a subset of bases exchanges at a rate that is fast enough to account for recognition of homology. Together, several studies suggest that a mechanism governed by the dynamic structure of DNA and catalyzed by diverse enzymes underlies both recognition of homology and initiation of strand exchange.  相似文献   

10.
Alkalinization of intracellular pH (pHi) causes an increase in UV resistance in wild-type and pH-sensitive mutant (DZ3) cells of Escherichia coli. Utilizing cells transformed with a plasmid (pA7) which bears the uvrA promoter fused to galK galactokinase structural gene, it was shown that alkaline pHi leads to an increase in the specific activity of galactokinase. This effect was not displayed in a mutant bearing a recA-insensitive lexA gene, nor in cells harboring a plasmid (pA8) in which the galK is fused to a lexA-insensitive uvrA promoter. Hence, the effects of pHi on cells functions may involve the lexA product of the SOS system.  相似文献   

11.
The mechanism of DNA replication in ultraviolet (UV)-irradiated Escherichia coli is proposed. Immediately after UV exposure, the replisome aided by single-strand DNA-binding protein (SSB) can proceed past UV-induced pyrimidine dimers without insertion of nucleotides. Polymerisation eventually resumes somewhere downstream of the dimer sites. Due to the limited supply of SSB, only a few dimers can be bypassed in this way. Nevertheless, this early DNA synthesis is of great biological importance because it generates single-stranded DNA regions. Single-stranded DNA can bind and activate RecA protein, thus leading to induction of the SOS response. During the SOS response, the cellular level of RecA protein increases dramatically. Due to the simultaneous increase in the concentration of ATP, RecA protein achieves the high-affinity state for single-stranded DNA. Therefore it is able to displace DNA-bound SSB. The cycling of SSB on and off DNA enables the replisome to bypass a large number of dimers at late post-UV times. During this late replication, the stoichiometric amounts of RecA protein needed for recombination are involved in the process of postreplication repair.  相似文献   

12.
Underwinding of DNA associated with duplex-duplex pairing by RecA protein   总被引:3,自引:0,他引:3  
Homologous pairing between gapped circular and partially homologous form I DNA, catalyzed by Escherichia coli RecA protein, leads to the formation of nascent synaptic joints between regions of duplex DNA. These duplex-duplex interactions result in underwinding of the form I DNA, as detected by a topoisomerase assay. Underwound DNA species have been studied with regard to their formation, stability, and topological requirements. The synaptic joints are short-lived and of low frequency compared with those formed between single-stranded and duplex DNA. Measurement of the degree of underwinding indicates joints 300-400 base pairs in length, in which the two DNA molecules are presumed to be interwound within the RecA-nucleoprotein filament. Underwound DNA was not detected in reactions between gapped DNA and partially homologous nicked circular or relaxed covalently closed DNA. We have also investigated the requirements for the initiation of strand exchange. Previous results have shown that strand exchange requires a homologous 3'-terminus complementary to the gapped region. We now show that the minimum length of overlap required for efficient initiation of strand exchange is one to two turns of DNA within the RecA-DNA nucleoprotein filament.  相似文献   

13.
Lesions induced by 5-bromouracil (BU), after its incorporation into DNA, led to effective induction of prophage lambda and W reactivation (or BU reactivation). Prophage induction due to incorporated BU occurred only with the wild-type prophage, and not for the lambda c1857 mutant with a thermosensitive repressor. Antipain, a protease inhibitor, inhibited wild-type prophage induction 70-90%. This indicates that BU-induced lesions may induce the SOS repair system. The finding that such lesions provoke BU reactivation permits the inference that BU-induced mutagenesis also proceeds via involvement of the error-prone repair system, and not directly as a result of base-pairing errors. Genetic evidence suggests that induction of the SOS repair system as a result of incorporation of BU into DNA is linked to the subsequent appearance of uracil residues and apyrimidinic sites, resulting from dehalogenation of incorporated BU. Apyrimidinic sites appear to be more effective than uracil residues in induction of the SOS system.  相似文献   

14.
15.
Synapsis and the formation of paranemic joints by E. coli RecA protein   总被引:22,自引:0,他引:22  
M Bianchi  C DasGupta  C M Radding 《Cell》1983,34(3):931-939
E. coli RecA protein promotes the homologous pairing of a single strand with duplex DNA even when certain features of the substrates, such as circularity, prohibit the true intertwining of the newly paired strands. The formation of such nonintertwined or paranemic joints does not require superhelicity, and indeed can occur with relaxed closed circular DNA. E. coli topoisomerase I can intertwine the incoming single strand in the paranemic joint with its complement, thereby topologically linking single-stranded DNA to all of the duplex molecules in the reaction mixture. The efficiency of formation of paranemic joints, the time course, and estimates of their length, all suggest that they represent true synaptic intermediates in the pairing reaction promoted by RecA protein.  相似文献   

16.
The effect of gaseous nitrogen dioxide (NO2) on cytotoxicity, induction of synthesis of UmuC and RecA proteins, and mutagenesis was studied in Escherichia coli strains with different capacities of DNA repair. Gaseous NO2 (90, 180 microliter/l) killed Escherichia coli. The recA mutant was most sensitive, the lexA mutant moderately sensitive, and the uvrA mutant and the wild-type the least sensitive. When 90 microliter/l NO2 gas was bubbled into bacterial suspensions for 30 min at a flow rate of 100 ml/min, the induction of umuC gene expression increased in the wild-type strain. NO2 also induced the recA gene expression in the wild-type strain. The synthesis of neither RecA nor UmuC proteins was induced in the recA and lexA mutants. We further investigated the NO2 mutagenesis in the cells treated with bubbling of NO2 gas. NO2 caused mutation to Trp+ of WP2.  相似文献   

17.
RecA protein requires ATP and its hydrolysis to ADP to complete the DNA strand-exchange reaction. We investigated how the nucleotides activate RecA by examining their effect on urea-induced unfolding, which could reflect domain-domain contact of protein. RecA is folded into three continuous domains: the N-terminal, central and C-terminal domains. The fluorescence of tyrosine residues, which lie mainly in the central domain, was modified in 1-3 M urea, while the red shift of fluorescence peak of the tryptophan residues located in the C-terminal domain occurred only in 3-6 M urea. Thus, the C-terminal domain of RecA is unfolded after the central part unfolds. The change in intensity of tryptophan fluorescence without a large shift in the peak at low concentrations of urea suggests that there are weak interactions between the central and C-terminal domains. This is supported by our observation that RecA protein lacking the C-terminal tail unfolded at lower concentrations of urea than the entire RecA, and with clear transitions, unlike the entire RecA. ATP and its unhydrolyzable analog (ATPgammaS), which enhance the binding of RecA to DNA, facilitated the urea-induced change in RecA tryptophan fluorescence, while ADP, an antagonist of ATP, prevented the change. ATP probably weakens the domain-domain contact and facilitates the DNA binding, while ADP stabilizes the contact and inhibits it. Supporting this conclusion, the binding of RecA lacking the C-terminal tail to DNA was not inhibited by ADP, while that of the intact RecA was.  相似文献   

18.
We show that an erroneous estimation of the quaternary structure of free protein distorts the quantitative analysis of its interaction with DNA, affecting especially the co-operativity value found. This could explain the discrepancy reported for the co-operativity value of the RecA-DNA interaction. The large cluster observed by electron microscopy indicates a very high co-operativity, whereas analysis of the binding isotherm indicates a moderate one, on the assumption of monomer. But if RecA is a large oligomer, the latter analysis would give a much higher co-operativity value and the former a smaller one, and they would be in accordance. Our sedimentation and light-scattering experiments suggest an oligomerization of about 30-mer or more, and support this explanation.  相似文献   

19.
Formation of nascent heteroduplex structures by RecA protein and DNA   总被引:13,自引:0,他引:13  
A M Wu  R Kahn  C DasGupta  C M Radding 《Cell》1982,30(1):37-44
E. coli RecA protein promotes homologous pairing in two distinguishable phases: synapsis and strand exchange. With circular single strands (plus strand only) and linear duplex DNA, polarized or unidirectional strand exchange appeared to cause heteroduplex joints to form and grow from a unique end of the duplex DNA. However, a variety of other pairs of substrates appeared to form joint molecules without regard to the polarity of the strands involved. This paradox has been resolved by observations that show that synapsis is fast, nonpolar and sensitive to inhibition by ADP, whereas strand exchange is slow, directional and relatively insensitive to inhibition by ADP. Thus a heteroduplex joint initiated at one end of the duplex DNA grows by continued strand exchange, whereas a joint initiated at the other end dissociates and is unable to start again because accumulating ADP inhibits synapsis. RecA protein appears to form a nascent protein-DNA structure, the RecA synaptic structure, in which at least 100-300 bp in the duplex molecule are held in an unwound configuration and in which the incoming strand is aligned with its complement.  相似文献   

20.
By using optical tweezers and a specially designed flow cell with an integrated glass micropipette, we constructed a setup similar to that of Smith et al. (Science 271:795-799, 1996) in which an individual double-stranded DNA (dsDNA) molecule can be captured between two polystyrene beads. The first bead is immobilized by the optical tweezers and the second by the micropipette. Movement of the micropipette allows manipulation and stretching of the DNA molecule, and the force exerted on it can be monitored simultaneously with the optical tweezers. We used this setup to study elongation of dsDNA by RecA protein and YOYO-1 dye molecules. We found that the stability of the different DNA-ligand complexes and their binding kinetics were quite different. The length of the DNA molecule was extended by 45% when RecA protein was added. Interestingly, the speed of elongation was dependent on the external force applied to the DNA molecule. In experiments in which YOYO-1 was added, a 10-20% extension of the DNA molecule length was observed. Moreover, these experiments showed that a change in the applied external force results in a time-dependent structural change of the DNA-YOYO-1 complex, with a time constant of approximately 35 s (1/e2). Because the setup provides an oriented DNA molecule, we determined the orientation of the transition dipole moment of YOYO-1 within DNA by using fluorescence polarization. The angle of the transition dipole moment with respect to the helical axis of the DNA molecule was 69 degrees +/- 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号