首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A clone of about 14 kb containing the metallothionein MT-I gene and three repetitive sequences, was isolated from a genomic library of mouse LMTK DNA. The MT-I gene was functional. Transfected cells became cadmium resistant. Two of the three repetitive sequences were moderately repetitive while the other was closely related to the R family.  相似文献   

2.
3.
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.  相似文献   

4.
5.
鼠肝细胞癌变中DNA甲基化作用的研究   总被引:4,自引:0,他引:4  
Activity of DNA methylase and DNA methylation level were measured from normal mouse liver, mouse liver charged with H22a ascitic hepatoma and H22a ascitic hepatoma cell by measuring incorporation of H3-methyl. S-Adenosyl-3H-methyl-methionine (3H-SAM) was used as methyl donor. DNA methylation level of different cells were measured by HP-LC. DNA methylase activity and DNA methylation level of H22a ascitic hepatoma, mouse liver charged with H22a ascitic hepatoma are lower than normal mouse liver. Treatments of antitumor drugs lead to a rising of DNA methylase activity of tumor cell, however, the DNA methylation level of tumor cell has not rised after such treatments.  相似文献   

6.
7.
DNA methylation is involved in many biological processes and is particularly important for both development and germ cell differentiation. Several waves of demethylation and de novo methylation occur during both male and female germ line development. This has been found at both the gene and all genome levels, but there is no demonstrated correlation between them. During the postnatal germ line development of spermatogenesis, we found very complex and drastic DNA methylation changes that we could correlate with chromatin structure changes. Thus, detailed studies focused on localization and expression pattern of the chromatin proteins involved in both DNA methylation, histone tails modification, condensin and cohesin complex formation, should help to gain insights into the mechanisms at the origin of the deep changes occurring during this particular period.  相似文献   

8.
9.
10.
The technique of DNA transfer by electroporation was investigated in an effort to evaluate its utility for the identification of developmentally controlled regulatory sequences. Transient and stable gene expression was detected in a variety of lymphoid cell lines subjected to electroporation. No correlation existed between the levels of chloramphenicol acetyltransferase (acetyl-CoA; chloramphenicol 3-O-acetyltransferase, EC 2.3.1.28) expression and stable transfection frequency. In all lymphoid cell lines tested, the simian virus 40 early region was a better promoter than was the Rous sarcoma virus long terminal repeat.  相似文献   

11.
Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells   总被引:3,自引:0,他引:3  
Recent studies showed high frequencies of homoplasmic mtDNA mutations in various human tumor types, suggesting that the mutated mtDNA haplotypes somehow contribute to expression of tumor phenotypes. We directly addressed this issue by isolating mouse mtDNA-less (rho(0)) cells for complete mtDNA replacement between normal cells and their carcinogen-induced transformants, and examined the effect of the mtDNA replacement on expression of tumorigenicity, a phenotype forming tumors in nude mice. The results showed that genome chimera cells carrying nuclear DNA from tumor cells and mtDNA from normal cells expressed tumorigenicity, whereas those carrying nuclear DNA from normal cells and mtDNA from tumor cells did not. These observations provided direct evidence that nuclear DNA, but not mtDNA, is responsible for carcinogen-induced malignant transformation, although it remains possible that mtDNA mutations and resultant respiration defects may influence the degree of malignancy, such as invasive or metastatic properties.  相似文献   

12.
This paper examines the extent of enzymatic methylation in 5'-CCGG sequences of inverted repeats in DNA isolated from adult liver and bone marrow of DBA/2 mice, with special attention to the methylation of such sequences in the vicinity of the beta-major globin gene. Two thirds of inverted repeats contain 5'-AGCT and 5'-CCGG sequences, as found by a method based on the capability of inverted repeats of forming intramolecular duplexes under the conditions of "zero-time" reassociation. Methylation in internal cytosines of 5'-CCGG sequences of inverted DNA repeats differs between bone marrow and liver tissues. The beta-major globin gene was found in DNA covalently linked to inverted repeats. The enzymatic methylation of inverted repeats neighbouring the beta-major globin gene differs at HpaII recognition sites; the DNA of bone marrow tissue, in which this gene is expressed, is less methylated at such sites as compared to liver DNA.  相似文献   

13.
Here, we summarize current knowledge about epigenetic reprogramming during mammalian preimplantation development, as well as the potential mechanisms driving these processes. We will particularly focus on changes taking place in the zygote, where the paternally derived DNA and chromatin undergo the most striking alterations, such as replacement of protamines by histones, histone modifications and active DNA demethylation. The putative mechanisms of active paternal DNA demethylation have been studied for over a decade, accumulating a lot of circumstantial evidence for enzymatic activities provided by the oocyte, protection of the maternal genome against such activities and possible involvement of DNA repair. We will discuss the various facets of dynamic epigenetic changes related to DNA methylation with an emphasis on the putative involvement of DNA repair in DNA demethylation.  相似文献   

14.
Methylation of DNA in normal mouse cultured 3T3 cells and in their virally or chemically transformed derivatives was studied. DNA methylation was studied by restriction with HpaII, MspI, or HpaII plus MspI. DNA from the chemically transformed cells was cleaved about twice as often with HpaII than was the DNA of normal and virally transformed cells. Digests with MspI and HpaII plus MspI were identical in all cell lines studied. Densitometry of the restriction patterns allowed an estimate of total DNA methylation from the weight average lengths. The chemically transformed cell line showed 25% reduction in methylation compared to the other cell lines. Southern blot hybridization using satellite DNA showed that these sequences followed a pattern of modification similar to that of total DNA.  相似文献   

15.
We have used Dnmtc/c ES cells that are homozygous for disruption of the DNA methyltransferase gene to address how de novo methylation is propagated and whether it is directed to specific sites in the early embryo. We examined the imprinted H19 gene and the specific-sequence region implicated as an “imprinting mark” to determine whether de novo methylation was occurring at a restricted set of sites. Since the “imprinting mark” was found to be methylated differentially at all stages of development, we reasoned that the sequence may still be a target for the de novo methylation activity found in the Dnmtc/c cells, even though the loss of maintenance methylase activity renders the H19 promoter active. We used bisulfite genomic sequencing to determine the methylation state of the imprinted region of the H19 gene and found a low level of DNA methylation at specific single CpG sites in the upstream region of the imprinted H19 sequence in the Dnmtc/c mutant ES cells. Moreover, these CpG sites appeared to be favoured targets for further de novo methylation of neighbouring CpG sites in rescued ES cells, which possess apparently normal maintenance activity. Our data provide further evidence for a separate methylating activity in ES cells and indicate that this activity displays sequence specificity. Dev. Genet. 22:111–121, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Transgenic tobacco plants containing a mouse metallothionein-I (MT-I) gene fused to the cauliflower mosaic virus 35S (CaMV 35S) promoter and nopaline synthase (nos) polyadenylation site were obtained by transforming tobacco leaf discs with an Agrobacterium tumefaciens strain carrying the chimaeric gene. Transformants were directly selected and rooted on medium containing cadmium and kanamycin. A total of 49 individual transgenic tobacco plants were regenerated. Among them 20% showed a very high expression level and their growth was unaffected by up to 200 M cadmium, whereas the growth of control plants was severely affected leaf chlorosis occurred on medium containing only 10 M cadmium. The concentration of MT-I in leaves of control and transgenic tobacco was determined with Cd/haemoglobin saturation assay, a polarographic method and western blotting. In addition, seeds from self-fertilized transgenic plants were germinated on medium containing toxic levels of cadmium and scored for tolerance/susceptibility to this heavy metal. The ratio of tolerant to susceptible plants was 3:1 indicating that the metallothionein gene is inherited as a single locus.  相似文献   

17.
The cDNA of mouse metallothionein, a small metal-binding protein rich in cysteine, has been cloned downstream from a bacterial inducible promoter and expressed in Escherichia coli. Upon induction, E. coli harboring this cDNA clone contained a protein species readily labelled by [35S]cysteine in vivo and incorporated 10-times as much 109Cd from the medium than would otherwise be the case. We show that expression of metallothionein endows resistance in E. coli to heavy metal ions such as mercury, silver, copper, cadmium and zinc by sequestering rather than exclusion or conversion, common mechanisms of metal resistance in bacteria.  相似文献   

18.
DNA methylation levels in normal and chemically-transformed mouse 3T3 cells   总被引:1,自引:0,他引:1  
Normal mouse embryo 3T3 cell cultures and those oncogenically transformed by the chemical carcinogens benzo(a)pyrene and methylcholanthrene were analyzed by high performance liquid chromatography to determine the 5-methylcytosine to cytosine base ratios in their total genomic DNA. The DNA methylation levels appear to be approximately equal in the three cell lines examined.  相似文献   

19.
In situ alterations of DNA methylation were studied between 14 d postcoitum and 4 d postpartum in Sertoli cells and germ cells from mouse testis, using anti-5-methylcytosine antibodies. Compared to cultured fibroblasts, Sertoli cells display strongly methylated juxtacentromeric heterochromatin, but hypomethylated chromatids. Germ cells always possess hypomethylated heterochromatin, whereas their euchromatin passes from a demethylated to a strongly methylated status between days 16 and 17 postcoitum. This hypermethylation occurs in the absence of DNA replication, germ cells being blocked in the G(0)-G(1) phase from day 15 postcoitum to birth. The DNA hypermethylation of germ cells is maintained until birth and could be visualized on both chromatids of metaphase chromosomes at the first postpartum cell division. Subsequently, the DNA hypermethylation is lost semiconservatively, being replaced by a methylation pattern recalling the typical fibroblast pattern. These alterations of DNA methylation follow a strict chronology, are chromosome structure and cell-type dependent, and may underlie profound changes of genome function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号