首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that platelets adhere to collagen substrates via a Mg2(+)-dependent mechanism mediated by the surface glycoprotein Ia-IIa (human leukocyte very late activation protein 2, alpha 2 beta 1 integrin) complex. The adhesion is specific for collagen and is supported by collagen types I, II, III, IV, and VI. Several other members of the integrin family of adhesive protein receptors recognize discrete linear amino acid sequences within their adhesive glycoprotein ligands. Experiments with both intact platelets and with liposomes containing the purified receptor complex indicated that the alpha 2 beta 1 receptor recognized denatured type I collagen in a Mg2(+)-dependent manner. To further localize the binding site, the alpha 1 and alpha 2 chains of type I collagen were purified by gel filtration and ion exchange chromatography and tested as adhesive substrates. Both the alpha 1(I) and alpha 2(I) chains effectively supported Mg2(+)-dependent platelet adhesion. The purified alpha 1(I) collagen chain was then subjected to cleavage with cyanogen bromide, and the resultant peptides were separated by chromatography on carboxymethylcellulose. Only the alpha 1(I)-CB3 fragment supported Mg2(+)-dependent platelet adhesion. The monoclonal antibody P1H5 which recognizes an epitope on the alpha 2 subunit of the integrin receptor and which inhibits the adhesion of both intact platelets and liposomes bearing the purified receptor to collagen also inhibited platelet adhesion to the alpha 1(I)-CB3 fragment. These results indicate that the alpha 2 beta 1 receptor recognizes a sequence of amino acids present in the alpha 1(I)-CB3 fragment of type I collagen. An identical or similar sequence likely mediates binding of the receptor to other collagen polypeptides.  相似文献   

2.
3.
Rat hepatocytes, freshly isolated with a collagenase perfusion technique, were found to attach within 1 h on collagen substrates and on culture dishes coated with cold insoluble globulin (CIG) or asialoceruloplasmin (AC). Spreading was observed on collagen and CIG but not on AC. Both attachment and spreading occurred in a simple balanced salt solution in the absence of serum. In the absence of serum no attachment was observed on plain plastic dishes or on dishes coated with serum albumin or other plasma proteins, unless divalent manganese ions were present. In the presence of manganese the hepatocytes attached to all surfaces tested, but no spreading occurred. Attachment to collagen occurred equally well to collagens type I or type III both in the native, fibrillar state and in the denatured state. Collagen attachment required magnesium ions but did not appear to involve the collagen-linked carbohydrates. Different mechanisms were found to operate in hepatocyte attachment to collagen and to AC; the latter is most likely mediated by the hepatocyte surface receptor involved in recognition and uptake of asialoglycoproteins. The role of CIG in hepatocyte attachment to collagen was investigated. Data are presented suggesting that this glycoprotein, which mediates the adhesion of fibroblasts to collagen, is not required for hepatocyte attachment to collagen.  相似文献   

4.
Acid-soluble and pepsin-treated collagen V were prepared from fetal human bones or human placenta, respectively, to be tested for potential cell adhesion promoting activity. Out of 14 different collagen I-adhering cell lines, 10 showed distinct adhesion to collagen V. In all cases adhesion was followed by spreading. The activities of intact and pepsin-solubilized collagen V were similar, suggesting that the cell binding sites are restricted to the triple-helical domain of the molecules. Cell adhesion was also induced by the unfolded form of collagen V and after separation of the α chains by heparin affinity chromatography. Isolated α2(V) chains, rich in RGD sequences, were more efficient than isolated α1(V) chains. However, cell adhesion to native or denatured collagen V did not proceed by the same molecular mechanisms as shown by cell adhesion inhibition experiments. Cell adhesion to native collagen V was insensitive to the presence of RGD-containing synthetic peptides while adhesion to denatured collagen V was inhibited by the peptides. Furthermore, the results strongly suggested a major role for α1α1 and α2β1 integrins in the RGD-independent cell adhesion to native collagen V. These data indicate that collagen V is a specific adhesive substrate for different cell types. It also suggests that distinct sets of RGD-dependent and RGD-independent receptors mediate cell attachment to unfolded and native collagen V, respectively. This mechanism is shared by at least the interstitial collagens I and VI, which supports the hypothesis that when included in the triple-helical conformation of collagens, RGD sequences are either not accessible to cells or exhibit specific conformations recognized by different integrins.  相似文献   

5.
The alpha 2 beta 1 integrin serves as either a specific cell surface receptor for collagen or as both a collagen and laminin receptor depending upon the cell type. Recently we established that the alpha 2 beta 1 integrin binds to a site within the alpha 1 (I)-CB3 fragment of type I collagen (Staatz, W. D., Walsh, J. J., Pexton, T., and Santoro, S. A. (1990) J. Biol. Chem. 265, 4778-4781). To define the alpha 2 beta 1 recognition sequence further we have prepared an overlapping set of synthetic peptides which completely spans the 148-amino acid alpha 1(I)-CB3 fragment and tested the peptides for ability to inhibit cell adhesion to collagen and laminin substrates. The minimal active recognition sequence defined by these experiments is a tetrapeptide of the sequence Asp-Gly-Glu-Ala (DGEA) corresponding to residues 435-438 of the type I collagen sequence. The DGEA-containing peptides effectively inhibited alpha 2 beta 1-mediated Mg2(+)-dependent adhesion of platelets, which use the alpha 2 beta 1 integrin as a collagen-specific receptor, to collagen but had no effect on alpha 5 beta 1-mediated platelet adhesion to fibronectin or alpha 6 beta 1-mediated platelet adhesion to laminin. In contrast, with T47D breast adenocarcinoma cells, which use alpha 2 beta 1 as a collagen/lamin receptor, adhesion to both collagen and laminin was inhibited by DGEA-containing peptides. Deletion of the alanine residue or substitution of alanine for either the glutamic or aspartic acid residues in DGEA-containing peptides resulted in marked loss of inhibitory activity. These results indicate that the amino acid sequence DGEA serves as a recognition site for the alpha 2 beta 1 integrin complex on platelets and other cells.  相似文献   

6.
Human VLA-2 (α2β1) mediates cellular adhesion to collagen and laminin and cell attachment by the human pathogen echovirus 1. We report here the cloning, sequencing and functional expression of the mouse VLA-2 α subunit homologue. This integrin subunit is closely related to its human counterpart, with 84% amino acid identity between the human and murine proteins. Conserved structural features include an identical number of amino acids, the presence of an I domain, and identity in the number and position of N-linked glycosylation sites and putative divalent cation binding regions. Murine and human α2 show 30% amino acid divergence within the cytoplasmic tail, a difference that can be detected with antisera directed against the C-terminal peptides. Functionally, mouse α2 was capable of mediating cell attachment to collagen and laminin, and responded to both intra- and extracellular signals with changes in its ligand affinity. In contrast, unlike its human homologue, mouse α2 did not promote binding of echovirus 1. Comparison of the primary structure of the homologues leads us to predict that echovirus 1 may bind in the region of the first two thirds of the human α2 I domain, where the sequences are most divergent, whereas more conserved flanking regions, and the conserved terminal one third of the I domain, may be involved in adhesion to collagen and laminin.  相似文献   

7.
Detergent extracts of primary rat hepatocytes and neonatal cardiac fibroblasts were applied to collagen type I-Sepharose in the presence of 1 mM MnCl2. Elution of bound proteins by 10 mM EDTA yielded one beta 1-integrin heterodimer from hepatocytes with an Mr of 180,000/115,000 under nonreducing conditions. Two beta 1-integrins with Mr's (nonreduced) of 180,000/115,000 and 145,000/115,000 could be isolated from surface-iodinated fibroblasts. A monoclonal antibody, 3A3, directed against the rat homolog of the human integrin VLA-1, precipitated the affinity-purified Mr 180,000/115,000 heterodimer, establishing the relatedness of the Mr 180,000 subunit to the alpha 1-chain of the beta 1-integrin subfamily. Both the alpha 1 beta 1-integrin and the 145,000/beta 1-integrin heterodimers bound specifically to Sepharose beads derivatized with the collagen fragment alpha 1(I) CB3, which lacks RGD sequences. Immunofluorescence staining using the 3A3 monoclonal antibody revealed that the rat alpha 1 beta 1-integrin was present at focal adhesion sites of fibroblasts grown on native collagen type I- but not on fibronectin-coated substrates, although both types of substrates supported the formation of beta 1-integrin containing focal adhesions. Similarly, hepatocytes cultured on substrata coated with collagen type I (but not fibronectin) were stained in a patchy pattern localized to the cell periphery by 3A3 IgG. Furthermore, 3A3 IgG completely inhibited the attachment of hepatocytes to collagen type I, whereas under identical conditions the attachment of fibroblasts to these substrates was inhibited only by approximately 40%. The attachment of both hepatocytes and cardiac fibroblasts to fibronectin was unaffected by the presence of the 3A3 antibody. Collectively these data show that a rat homolog of the human VLA-1 heterodimer both biochemically and functionally fulfills the criteria of a single collagen receptor on rat hepatocytes. In contrast, rat cardiac fibroblasts utilize two different collagen-binding integrins to adhere to collagen, one of which is the rat homolog of the human VLA-1 heterodimer. Furthermore alpha 1(I) CB3 contains cell binding sites for beta 1-integrins.  相似文献   

8.
The adhesion of Balb/c 3T12 cells to fibronectin (FN) and to denatured (DC) or native (NC) collagen is differentially sensitive to divalent cations and to sodium azide. Short-time adhesion (10 min) to FN requires either Mg2+ or Mn2+, whereas only Mn2+ stimulates attachment to DC and NC. Azide treatment only slightly affects adhesion of cells to FN, but strongly inhibits cell attachment to DC and NC. Attachment to any of these substrata is unaffected by monensin and by treatment of the cells with an intracellular fraction, making unlikely the possibility that molecules released by secretion or cell lysis participate in the adhesive process. Soluble collagen inhibits the adhesion of cells to DC and NC, but does not affect adhesion to FN. Finally, rabbit antiserum against collagen binding proteins inhibits cell attachment to NC and DC; the cells, however, attach normally to FN in presence of this antiserum. Taken together, our results support the view that 3T12 cells attach directly to native or denatured collagens and that FN is not required for this process.  相似文献   

9.
To control their attachment to substrates and other cells, cells regulate their adhesion receptors. One regulatory process is receptor crosstalk, where the binding of one type of cell adhesion molecule influences the activity of another type. To identify such crosstalk and gain insight into their mechanisms, we developed the stimulated single‐cell force spectroscopy assay. In this assay, the influence of a cells adhesion to one substrate on the strength of its adhesion to a second substrate is examined. The assay quantifies the adhesion of the cell and the contributions of specific adhesion receptors. This allows mechanisms by which the adhesion is regulated to be determined. Using the assay we identified crosstalk between collagen‐binding integrin α1β1 and fibronectin‐binding integrin α5β1 in HeLa cells. This crosstalk was unidirectional, from integrin α1β1 to integrin α5β1, and functioned by regulating the endocytosis of integrin α5β1. The single‐cell assay should be expandable for the screening and quantification of crosstalk between various cell adhesion molecules and other cell surface receptors.  相似文献   

10.
We report a study of the substratum and medium requirements for attachment and neurite outgrowth by cells of the pheochromocytoma-derived PC12 line. In attachment medium containing both Ca2+ and Mg2+, more than 50% of cells attached within 1 hr to petri dishes coated with native collagen Types I/III or II, native or denatured collagen Type IV, laminin, wheat germ agglutinin (WGA), or poly-L-lysine; attachment to dishes coated with nerve growth factor (NGF) was only about 20% and attachment to uncoated dishes or to dishes coated with fibronectin or gelatin was almost nil. Neither prior culturing in the presence of NGF nor addition of NGF to the attachment medium significantly affected the extent of attachment to collagen or laminin. With Ca2+ (1 mM) as the sole divalent cation, cells attached normally to WGA, polylysine, and NGF, but failed to attach to collagen or laminin. With Mg2+ (1 mM) as the only divalent cation, attachment to all substrata was about the same as in medium with both Ca2+ and Mg2+. Like the ionic requirements, the kinetics of attachment, insensitivity to protease treatment of the cells, and inhibition by low temperature and sodium azide were similar for PC12 attachment to collagen and laminin, suggesting that a common molecular mechanism may underlie attachment to these substrata. The only significant difference observed was that addition of WGA (30 micrograms/ml) to the attachment medium inhibited attachment to collagen but promoted attachment to laminin. Finally, PC12 cells extended neurites on laminin, on native collagens I/III, II, and IV, and on denatured collagen IV; they did not extend neurites on denatured collagens I/III or II, NGF, or WGA. Neurite outgrowth on collagen and laminin occurred with Mg2+ as the sole divalent cation. These results suggest that the same Mg2+-dependent adhesion mechanism operates at the cell body and at the growth cone.  相似文献   

11.
Because alignment of the amino acid sequences of chick skin collagen α2-CB3 (1) with the relevant portion of chick skin collagen α1-CB7 (2) suggested that a Gly-X-Y triplet may have been missed in the latter, the peptide TM-2, produced by tryptic digestion of maleylated α1-CB7, was reinvestigated. Cleavage by trypsin at the unblocked lysine at position 18, and isolation of the resulting COOH-terminal peptide, showed this to be a 15-residue peptide containing a previously unrecognized Gly-Pro-Hyp triplet. Sequencing of the peptide showed this to occupy positions 4 through 6, or 56 through 58 of α1-CB7. The latter thus has 271 instead of 268 residues, and the α1[I] chain 1055 instead of 1052.  相似文献   

12.
The circulating enzyme, α2-antiplasmin cleaving enzyme (APCE), has very similar sequence homology and proteolytic specificity as fibroblast activation protein (FAP), a membrane-bound proteinase. FAP is expressed on activated fibroblasts associated with rapid tissue growth as in embryogenesis, wound healing, and epithelial-derived malignancies, but not in normal tissues. Its presence on stroma suggests that FAP functions to remodel extracellular matrix (ECM) during neoplastic growth. Precise biologic substrates have not been defined for FAP, although like APCE, it cleaves α2-antiplasmin to a derivative more easily cross-linked to fibrin. While FAP has been shown to cleave gelatin, evidence for cleavage of native collagen, the major ECM component, remains indistinct. We examined the potential proteolytic effects of FAP or APCE alone and in concert with selected matrix metalloproteinases (MMPs) on collagens I, III, and IV. SDS-PAGE analyses demonstrated that neither FAP nor APCE cleaves collagen I. Following collagen I cleavage by MMP-1, however, FAP or APCE digested collagen I into smaller peptides. These peptides were analogous to, yet different from, those produced by MMP-9 following MMP-1 cleavage. Amino-terminal sequencing and mass spectrometry analyses of digestion mixtures identified several peptide fragments within the sequences of the two collagen chains. The proteolytic synergy of APCE in the cleavage of collagen I and III was not observed with collagen IV. We conclude that FAP works in synchrony with other proteinases to cleave partially degraded or denatured collagen I and III as ECM is excavated, and that derivative peptides might function to regulate malignant cell growth and motility.  相似文献   

13.
A 36-residue peptide containing the bond cleaved by animal collagenases was isolated from a digest of chick skin collagen α1-CB7 by Staphylococcus V8 protease. This cleavage site peptide, in contrast to the 36-residue α1-CB2, showed no tendency to renature to the triple helical form, as monitored by molecular sieve chromatography and the determination of circular dichroism spectra. These results provide a direct demonstration that the conformation of the α1[I] chain immediately around the collagenase cleavage site in the native molecule must be of a lower degree of helicity than other portions of the chain. This is considered to be an important factor in the collagenase specificity, in providing access to the sensitive bonds, but enzyme binding sites, probably located in the adjacent region(s) of maximum helicity, are also considered necessary to produce the maximum reaction rate.  相似文献   

14.
Cross-linking of fibronectin to collagenous proteins   总被引:3,自引:0,他引:3  
Summary Attempts were made to cross-link several collagenous proteins to fibronectin with Factor XIIIa (plasma transglutaminase). Cross-linking was demonstrated with type I collagen, type II collagen, type III collagen, type V or AB collagen, and 1(I)-CB7 and 1(I)-CB8 cyanogen bromide fragments of type I collagen. Cross-linking was not demonstrated with type IV collagen, Clq, and cyanogen bromide fragment a 1(I)-CB6. The pH optimum for cross-linking of 1(I)-CB7 to fibronectin was 8.5 to 9.6. Cross-linking of 1(I)-CB7 to fibronectin was somewhat enhanced at lower than physiological ionic strength.  相似文献   

15.
Adhesion to collagens by most cell types is mediated by the integrins α1β1 and α2β1. Both integrin α subunits belong to a group which is characterized by the presence of an I domain in the N-terminal half of the molecule, and this domain has been implicated in the ligand recognition. Since purified α1β1 and α2β1 differ in their binding to collagens I and IV and recognize different sites within the major cell binding domain of collagen IV, we investigated the potential role of the α1 and α2 I domains in specific collagen adhesion. We find that introducing the α2 I domain into α1 results in surface expression of a functional collagen receptor. The adhesion mediated by this chimeric receptor (α1-2-1β1) is similar to the adhesion profile conferred by α2β1, not α1β1. The presence of α2 or α1-2-1 results in preferential binding to collagen I, whereas α1 expressing cells bind better to collagen IV. In addition, α1 containing cells bind to low amounts of a tryptic fragment of collagen IV, whereas α2 or α1-2-1 bearing cells adhere only to high concentrations of this substrate. We also find that collagen adhesion of NIH-3T3 mediated by α2β1 or α1-2-1β1, but not by α1, requires the presence of Mn2+ ions. This ion requirement was not found in CHO cells, implicating the I domain in cell type-specific activation of integrins. J. Cell. Physiol. 176:634–641, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
VLA-2, the α2β1 integrin, mediates cell adhesion to collagen and laminin, and is the receptor for the human pathogen echovirus 1. Because of its similarity to domains present in other proteins that interact with collagen, a 191 amino acid region within the α2 subunit (the I domain) has been proposed as a potential site for ligand interactions. Although the α2 subunits of human and murine VLA-2 are 84% identical, human α2 promotes virus binding whereas murine α2 does not. We used murine/human chimeric α2 molecules to identify regions of the human molecule essential for virus binding. Virus bound efficiently to a chimeric protein in which the human I domain was inserted into murine α2, indicating that the human I domain is responsible for specific virus interactions. Monoclonal antibodies that inhibited virus attachment all recognized epitopes within the human I do-main, further suggesting that virus interacts with this portion of the molecule. Similarly, antibodies that prevented VLA-2-mediated cell adhesion to collagen also mapped to the I domain. These results indicate that the I domain plays a role in VLA-2 interactions both with virus and with extracellular matrix ligands.  相似文献   

17.
[3H]NaBH4 reduced bovine dentin collagen was denatured at 60°C for 1 hr and then digested with trypsin. The digest was still substantially insoluble suspension, but it was found that 99% of dentin collagen can be solubilized if the digest was heated again at 60°C for 15 min. Two cross-linked tryptic peptides were isolated from this digest by sequential chromatographies on Sephadex G50, phosphocellulose and DEAE-cellulose column. One isolated peptide was characterized as a 59 residue cross-linked peptide including one residue of dihydroxylysinonorleucine and the other was 103 residue including one residue of pyridinoline. The amino acid compositions were consistent with the identification of the 59 residue peptide as the sequence in α1-CB4-5 (76–90) linked to the sequence in α1-CB6 (990-23c), and the 103 residue peptide as the sequence 76–90 linked to two of the sequence 990-23c. These results strongly support the previously proposed precursor-product relationship between dihydroxylysinonorleucine and pyridinoline.  相似文献   

18.
19.
The effect of phorbol esters on the adhesive properties of NIH/3T3 mouse fibroblasts was investigated using plastic substrates precoated with the extracellular matrix proteins fibronectin, collagen, and laminin. Treatment with phorbol 12-myristate 13-acetate (PMA) enhanced NIH/3T3 cell attachment to laminin and type IV collagen substrates but had little or no effect on attachment to fibronectin and type I collagen substrates. The effect of PMA in enhancing cell attachment to laminin and type IV collagen substrates was dose dependent between 10(-9) and 10(-7) M. PMA was effective as early as 30 min; the effect reached a maximum at 2 h and decreased gradually. Phorbol 12, 13-dibenzoate and phorbol 12, 13-diacetate were effective but to a lesser extent and phorbol 12-myristate and phorbol 13-acetate showed little or no effect. These results suggest that PMA may enhance NIH/3T3 cell adhesion through effects on laminin and type IV collagen receptors. Retinoic acid, which itself requires at least 6 h to show an effect on attachment, did not have any effect on cell attachment in 2 h and, if anything, slightly inhibited PMA-enhanced cell attachment to laminin and type IV collagen substrates.  相似文献   

20.
Procollagen and collagen were isolated from the culture medium and cell layer of line TSD4 (obtained from mouse teratocarcinoma OTT6050). SDS-polyacrylamide gel electrophoresis of the highly purified procollagen fraction demonstrated that the fraction is composed of θ chains (150,000 daltons), pro α chains (130,000 daltons), and α chains (100,000 daltons). Limited pepsin digestion of this fraction yielded a single species of collagen molecules having a chain composition (α1)3, as did collagen isolated from the cell layer. Each α1 chain appears to be slightly larger than α1 chains from calf or human type I and type III collagen. Amino acid analysis and cyanogen bromide peptide profiles of pepsin-treated TSD4 collagen demonstrated significant differences from those of other collagens (II, III, IV) of the type α1(X)3, although similar to that of the α1 chain of type I collagen, [α1(I)]2α2. Taken together, acrylamide gel electrophoresis, amino acid composition, electron microscopy, and cyanogen bromide peptide analysis indicate that this material represents a new molecular species of collagen not previously characterized, probably related to [α1(I)]3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号