共查询到20条相似文献,搜索用时 15 毫秒
1.
The LDL receptor locus in familial hypercholesterolemia: multiple mutations disrupt transport and processing of a membrane receptor 总被引:23,自引:0,他引:23
The receptor for low-density lipoprotein (LDL) is synthesized as a 120 kd precursor that undergoes a 40 kd posttranslational increase in apparent molecular weight en route to the cell surface. We describe seven mutations that disrupt synthesis, processing and transport of the receptor in fibroblasts from 77 subjects with the clinical diagnosis of homozygous familial hypercholesterolemia. One mutation obliterates synthesis of immunoprecipitable precursor. Three mutations specify precursors (100, 120 and 135 kd) that fail to undergo normal processing and fail to reach the cell surface. The other three mutations specify precursors (100, 120, and 170 kd) that undergo a normal 40 kd increase in molecular weight and reach the surface, but do not bind LDL normally. Pedigree studies show that each mutation segregates as an allele at the LDL receptor locus. These data imply that signals for transport of receptors from endoplasmic reticulum to the cell surface are contained within the amino acid sequences of the receptors, and that mutations affecting these sequences can disrupt receptor transport. 相似文献
2.
3.
Trond P. Leren Hilde Sundvold Olaug K. Rødningen Serena Tonstad Kari Solberg Leiv Ose Kåre Berg 《Human genetics》1995,95(6):671-676
Familial hypercholesterolemia (FH) is caused by defective low density lipoprotein (LDL) receptors and is characterized by hypercholesterolemia and premature coronary heart disease. Two strategies can be used to identify the mutation in the LDL receptor gene underlying FH. One strategy is to search for novel mutations by DNA sequencing with or without prior mutation screening. The other strategy is to screen for known mutations. In this study we employed the latter strategy to screen 75 unrelated, Norwegian FH subjects for 38 known mutations. Three of the 38 mutations were detected in our group of FH subjects. Two subjects had FH-Padova, one had FH-Cincinnati-2 and one had FH-Gujerat. When additional unrelated FH heterozygotes were screened for the three mutations, the gene frequencies were 1.3%, 1.0% and 3.0%, respectively. In addition to identifying known mutations we also detected a novel stop codon in codon 541 (S541X). We conclude that screening for known mutations in the LDL receptor gene should be used as a complementary strategy to screening for novel mutations in order to understand the molecular genetics of FH. 相似文献
4.
家族性高胆固醇血症低密度脂蛋白受体第13外显子突变分析 总被引:1,自引:0,他引:1
目的:探讨本课题组收集家族性高胆固醇血症(FH)患者中存在低密度脂蛋白受体(LDLR)第13外显子(E13)基因突变患者临床生化和心血管系统损害特点.方法:对9例临床诊断为FH、基因检测到LDLR基因E13突变的患者进行回顾性分析.结果:(1)临床诊断FH纯合子患者7名,其总胆固醇(TC)水平15.12~26.14 mmol/L,杂合子患者2名,TC水平11.30~11.75 mrnol/L.(2)均可见不同程度黄色瘤;(3)FH纯合子3例心电图出现ST-T改变;4例儿童和1例青年患者出现瓣膜损害,冠脉血流储备(CVFR)减低;杂合子心电图检查均正常,1例出现瓣膜损害,CVFR均正常.(4)核苷酸序列分析证实:9例E13突变患者中,A606T纯舍突变3名;D601Y纯合突变2名;A606T+、W462X和A606T+D601Y复合杂合突变各1名;A606T和D601Y杂合突变各1名.结论:FH严重损害患儿心血管系统和皮肤,LDLR基因E13出现的A606T和D601Y突变可能成为中国FH人群的高频突变位点. 相似文献
5.
Familial hypercholesterolemia (FH) results from impaired catabolism of plasma low density lipoproteins (LDL), thus leading to high cholesterol, atherosclerosis, and a high risk of premature myocardial infarction. FH is commonly caused by defects of the LDL receptor or its main ligand apoB, together mediating cellular uptake and clearance of plasma LDL. In some cases FH is inherited by mutations in the genes of PCSK9 and LDLRAP1 (ARH) in a dominant or recessive trait. The encoded proteins are required for LDL receptor stability and internalization within the LDLR pathway. To detect the underlying genetic defect in a family of Turkish descent showing unregular inheritance of severe FH, we screened the four candidate genes by denaturing gradient gel electrophoresis (DGGE) mutation analysis. We identified different combinatory mixtures of LDLR- and LDLRAP1-gene defects as the cause for severe familial hypercholesterolemia in this family. We also show for the first time that a heterozygous LDLR mutation combined with a homozygous LDLRAP1 mutation produces a more severe hypercholesterolemia phenotype in the same family than a homozygous LDLR mutation alone. 相似文献
6.
We have identified 16 different mutations of the low-density lipoprotein receptor (LDLR) gene in 25 unrelated Korean patients with heterozygous familial hypercholesterolemia (FH), including five novel mutations, C83Y, 661del17, 1705insCTAG, C675X, and 941-1G>A. The 1705insCTAG mutation in which the four 3 cent -terminal nucleotides of exon 11 are duplicated was found to prevent splicing of exon 11 and would therefore generate a truncated polypeptide. The in-frame 36-bp deletion (1591del36) in exon 11, which had been reported only in one Korean FH patient, was also found. We showed that this change affects transport of the LDL receptor from the endoplasmic reticulum to the cell surface. In addition, we found 8 mutations (-136C>T, E119K, E207K, E207X, F382L, R574Q, 1846-1G>A, and P664L) that had been described in other ethnic groups but not in Koreans, and 2 mutations (R94H and D200N) that had been described in Koreans as well as other ethnic groups. 5 mutations (1591del36, E119K, E207X, E207K, and P664L) were found more than once in the Korean FH samples. Identification of the novel and recurring LDLR mutations in Korean FH patients should facilitate prenatal and early diagnosis in families at high risk of FH. 相似文献
7.
The low-density lipoprotein receptor (LDLR) is the primary mechanism for uptake of cholesterol-carrying particles into cells. The region of the LDLR implicated in receptor recycling and lipoprotein release at low pH contains a pair of calcium-binding EGF-like modules, followed by a series of six YWTD repeats and a third EGF-like module. The crystal structure at 1.5 A resolution of a receptor fragment spanning the YWTD repeats and its two flanking EGF modules reveals that the YWTD repeats form a six-bladed beta-propeller that packs tightly against the C-terminal EGF module, whereas the EGF module that precedes the propeller is disordered in the crystal. Numerous point mutations of the LDLR that result in the genetic disease familial hypercholesterolemia (FH) alter side chains that form conserved packing and hydrogen bonding interactions in the interior and between propeller blades. A second subset of FH mutations are located at the interface between the propeller and the C-terminal EGF module, suggesting a structural requirement for maintaining the integrity of the interdomain interface. 相似文献
8.
Erasmo Pereira Raoul Ferreira Brigitte Hermelin Ginette Thomas Chantal Bernard Véronique Bertrand Hadad Nassiff Dora Mendez Del Castillo Gilbert Bereziat Pascale Benlian 《Human genetics》1995,96(3):319-322
The molecular basis of familial hypercholesterolemia (FH) in three families of Spanish descent from La Habana was investigated by the candidate gene approach. The Arg3500Gln mutation of apolipoprotein B-100 was not found. Identification of low density lipoprotein receptor (LDLR) gene haplotypes segregating with FH guided the characterisation of three point mutations by automated sequencing. One, a Val408Met missense mutation, a founder mutation in Afrikaner FH patients, was recurrent, being associated with a distinct DNA haplotype. The other two, Glu256Lys and Val776Met missense mutations, were novel and modified highly conserved residues. These mutations were absent in normolipidemic subjects and were associated in heterozygous carriers with twice the cholesterol levels observed in noncarriers. Noticeably, cardiovascular complications were rarely observed in older heterozygotes, even in those with the Afrikaner FH-2 mutation. These findings confirm the molecular heterogeneity of LDLR gene mutations causing FH and the variability of their expression across different populations. 相似文献
9.
Use of three DNA polymorphisms of the LDL receptor gene in the diagnosis of familial hypercholesterolemia 总被引:1,自引:1,他引:1
A. Daga T. Mattioni R. Balestreri D. A. Coviello G. Corte S. Bertolini 《Human genetics》1990,84(5):412-416
Summary Familial hypercholesterolemia (FH) is an autosomal dominant metabolic disorder caused by several different mutations in the low density lipoprotein (LDL) receptor gene. This large number of different mutations, often undetectable in Southern blotting, makes it impossible directly to diagnose the disease. However, restriction fragment length polymorphisms (RFLPs) can be used to follow the inheritance of the defective gene in FH families. In the present study, we report the use of three RFLPs, detected by PvuII, ApaLI and AvaII restriction enzymes, to determine the haplotypes of normal and defective LDL receptor genes in 61 families with FH and in 128 normal individuals. Two of the nine haplotypes were significantly more often associated with the affected genes, whereas one was significantly less frequent. Although none of the associations was strong enough to allow diagnosis in individuals, it was possible, using the three RFLPs, to identify the haplotype of the affected gene in 57 families and to carry out unequivocal diagnosis in 67% of the cases. In four families, PvuII and AvaII detected an abnormal fragment co-segregating with the disease, thus increasing the percentage of diagnosis to 73.4% of the cases. 相似文献
10.
M. J. Kotze J. Nico P. de Villiers Odell Loubser Rochelle Thiart Charlotte L. Scholtz Frederick J. Raal 《Human genetics》1997,100(1):101-103
Two novel mutations Q363X and D365E were identified in the low-density lipoprotein receptor gene in a Cypriot patient with
heterozygous familial hypercholesterolemia. Restriction enzyme analysis of the index case and seven of her family members,
by using AvaII and PvuII respectively, demonstrated that the two exon 8 mutations are transmitted in cis within the family. The disease phenotype
is probably caused by the stop-363 mutation; this would result in a truncated protein that would probably be rapidly degraded
in the extracellular space.
Received: 15 August 1996 / Accepted: 10 February 1997 相似文献
11.
Kimiko Yamakawa Kohki Takada Hisako Yanagi Shigeru Tsuchiya Koichi Kawai Soichi Nakagawa Goro Kajiyama Hideo Hamaguchi 《Human genetics》1989,82(4):317-321
Summary The low-density lipoprotein (LDL) receptor genes from 18 unrelated Japanese heterozygotes and 1 homozygote with classical familial hypercholesterolemia were analyzed by Southern blot hybridization using fragments of the human LDL receptor cDNA as probes. Four different deletion mutations were detected among 20 mutant LDL receptor genes (20%); they were characterized by restriction mapping. None of these mutations has previously been reported in Caucasian patients with FH: three of the mutations were novel and one was similar to the detetion mutation of FH-Tonami described previously in Japanese patients. In three of the four deletion mutations, the rearrangements were related to intron 15 of the LDL receptor gene, in which many Alu sequences exist. The data suggest that a wide range of molecular heterogeneity exists even in major rearrangements resulting in deletions in the LDL receptor gene. The data also support the hypothesis that there are preferential sites within the LDL receptor gene for major rearrangements resulting in deletions. The possibility that a higher frequency of deletion mutations occurs in classical FH than previously suspected is discussed. 相似文献
12.
A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect. 下载免费PDF全文
D Landsberger V Meiner A Reshef Y Levy D R van der Westhuyzen G A Coetzee E Leitersdorf 《American journal of human genetics》1992,50(2):427-433
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here we characterize an LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found neither in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients. 相似文献
13.
TaqI polymorphism in the LDL receptor gene and a TaqI 1.5-kb band associated with familial hypercholesterolemia 总被引:1,自引:1,他引:0
Kimiko Yamakawa Takaaki Okafuji Yukio Iwamura Kenji Yuzawa Juichi Satoh Naoko Hattori Yasuko Yamanouchi Hisako Yanagi Koichi Kawai Shigeru Tsuchiya David W. Russell Hideo Hamaguchi 《Human genetics》1988,80(1):1-5
Summary The low density lipoprotein (LDL) receptor gene was analyzed in 67 unrelated healthy Japanese and 38 members of six consecutive families with familial hypercholesterolemia (FH) by Southern blot hybridization with TaqI, an LDL receptor cDNA fragment containing exons 1 to 8 being used as a probe. A new TaqI RFLP at the LDL receptor locus was detected with allele frequencies of 0.67 and 0.33. The data obtained with smaller cDNA subfragment probes revealed that the TaqI RFLP site is located within 1.1 kb of the 5 side of the EcoRI site of exon 5. The TaqI RFLP was in linkage disequilibrium with the PstI RFLP but showed no significant linkage disequilibrium with the RFLPs for AvaII, ApaLI/I15, PvuII, NcoI, and ApaLI/3. Among the seven RFLPs at the LDL receptor locus, the TaqI RFLP was the only useful genetic marker in one of the six families with FH. Furthermore, the association of an additional TaqI 1.5-kb band with a mutant LDL receptor gene was observed in another family with FH in which the proband was homozygous for all of the seven RFLPs. The data obtained with various restriction enzymes and smaller cDNA subfragments probes suggested that a minor change in nucleotide sequences in the region including exons 5 to 8 is present in the mutant gene. These data suggest that the TaqI RFLP is a useful genetic marker at the LDL receptor locus and that TaqI serves for the analysis of some mutant LDL receptor genes, when used with small LDL receptor cDNA probes. 相似文献
14.
Amsellem S Briffaut D Carrié A Rabès JP Girardet JP Fredenrich A Moulin P Krempf M Reznik Y Vialettes B de Gennes JL Brukert E Benlian P 《Human genetics》2002,111(6):501-510
Familial hypercholesterolemia (FH), a frequent monogenic condition complicated by premature cardiovascular disease, is characterized by high allelic heterogeneity at the low-density lipoprotein receptor ( LDLR) locus. Despite more than a decade of genetic testing, knowledge about intronic disease-causing mutations has remained limited because of lack of available genomic sequences. Based on the finding from bioinformatic analysis that Alu repeats represent 85% of LDLR intronic sequences outside exon-intron junctions, we designed a strategy to improve the exploration of genomic regions in the vicinity of exons in 110 FH subjects from an admixed population. In the first group of 42 patients of negative mutation carriers, as previously established by former screening strategies (denaturing gradient gel electrophoresis, DNA sequencing with former primers overlapping splice-sites, Southern Blotting), about half ( n=22) were found to be carriers of at least one heterozygous mutation. Among a second group of 68 newly recruited patients, 27% of mutation carriers ( n=37) had a splicing regulatory mutation. Overall, out of the 54 mutations identified, 13 were intronic, and 18 were novel, out of which nearly half were intronic. Two novel intronic mutations (IVS8-10G-->A within the polypyrimidine tract and IVS7+10G-->A downstream of donor site) might create potential aberrant splice sites according to neural-network computed estimation, contrary to 31 common single nucleotide variations also identified at exon-intron junctions. This new strategy of detecting the most likely disease-causing LDLR mutations outside of Alu-rich genomic regions reveals that intronic mutations may have a greater impact than previously reported on the molecular basis of FH. 相似文献
15.
Evidence that familial hypercholesterolemia mutations of the LDL receptor cause limited local misfolding in an LDL-A module pair 总被引:2,自引:0,他引:2
Mutations at conserved sites within the ligand-binding LDL-A modules of the LDL receptor cause the genetic disease familial hypercholesterolemia (FH), and several of these FH mutations in modules five and six prevent the isolated single modules from folding properly to a nativelike three-dimensional structure. Because LDL-A modules occur as a series of contiguous repeats in the LDLR and related proteins, we investigated the impact of two FH mutations in LDL-A module five (D203G and D206E) and two mutations in module six (E219K and D245E) in the context of the covalently connected module five-six pair. HPLC chromatography of the products formed under conditions that efficiently refold the native module five-six pair demonstrate that, for each mutation, a folding defect persists in the module pair. NMR spectroscopy and calcium affinity measurements of the ensemble of misfolded products demonstrate that the unaltered module of each pair can fold to its native structure regardless of the range of misfolded conformations adopted by its mutated neighbor. These findings lend additional support to a model in which individual LDL-A modules of the LDL receptor act as independent structural elements. 相似文献
16.
Kimiko Yamakawa-Kobayashi Tsutomu Kobayashi Keijiro Saku Kikuo Arakawa Hideo Hamaguchi 《Human genetics》1993,92(4):331-335
Two novel frameshift mutations were detected in the mutant LDL receptor genes responsible for familial hypercholesterolemia. One was a 5-bp insertion at codon 395 in exon 9, and the other was a one nucleotide deletion at codon 531 in exon 11. Both mutations alter the reading frame and consequently produce a premature stop codon in the region of the mature LDL receptor homologous to the epidermal growth factor (EGF) precursor. With regard to the mechanism responsible for the generation of these frameshift mutations, strand slipped mispairing mediated by short direct repeats is considered to be the most likely. The findings seem to support the hypothesis that a short direct repeat in DNA sequence can have a profound influence on the stability of a given gene and promote human gene mutations. 相似文献
17.
The impact of severe LDL receptor mutations on SREBP-pathway regulation in homozygous familial hypercholesterolemia (FH) 总被引:1,自引:0,他引:1
Familial hypercholesterolemia (FH), Niemann-Pick disease type C (NPC) and Tangier disease (TD) are genetic inherited disorders with impaired processing of cholesterol, caused by mutations in genes that regulate cellular uptake, intracellular movement and transport of cholesterol. Various studies have shown a crucial regulatory role of the SREBP-pathway for cellular cholesterol homeostasis in these diseases. Since cholesterol is an essential structural component of cells, we assessed the impact of a severe FH causing LDLR mutation (FH p.W556R) on the SREBP pathway in primary FH fibroblasts. Primary FH fibroblasts derived from patients with the LDL receptor mutation p.W556R were used for gene expression experiments. Gene expression studies revealed increased expressions of SREBP regulated genes HMGCR, LDLR, SREBP-2, SREBP-1, SR-BI, INSIG-1, but interestingly not SCAP. In contrast expression of ABCA1, was strongly decreased in homozygous, but not in heterozygous p.W556R fibroblasts. Gene expression experiments with LDL receptor lacking primary FH fibroblasts, revealed that SR-BI and ABCA1 are important regulators for cholesterol acquisition in FH cells, consistent with findings in cells from NPC and TD patients. 相似文献
18.
A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor 总被引:7,自引:0,他引:7
Basolateral targeting of membrane proteins in polarized epithelial cells typically requires cytoplasmic domain sorting signals. In the familial hypercholesterolemia (FH)-Turku LDL receptor allele, a mutation of glycine 823 residue affects the signal required for basolateral targeting in MDCK cells. We show that the mutant receptor is mistargeted to the apical surface in both MDCK and hepatic epithelial cells, resulting in reduced endocytosis of LDL from the basolateral/sinusoidal surface. Consequently, virally encoded mutant receptor fails to mediate cholesterol clearance in LDL receptor-deficient mice, suggesting that a defect in polarized LDL receptor expression in hepatocytes underlies the hypercholesterolemia in patients harboring this allele. This evidence directly links the pathogenesis of a human disease to defects in basolateral targeting signals, providing a genetic confirmation of these signals in maintaining epithelial cell polarity. 相似文献
19.
Relationship between cholesteryl ester transfer protein and LDL heterogeneity in familial hypercholesterolemia 总被引:4,自引:0,他引:4
Hogue JC Lamarche B Gaudet D Larivière M Tremblay AJ Bergeron J Lemieux I Després JP Gagné C Couture P 《Journal of lipid research》2004,45(6):1077-1083
Small, dense LDL particles have been associated with an increased risk of coronary artery disease, and cholesteryl ester transfer protein (CETP) has been suggested to play a role in LDL particle remodeling. We examined the relationship between LDL heterogeneity and plasma CETP mass in familial hypercholesterolemia (FH). LDL particles were characterized by polyacrylamide gradient gel electrophoresis in a total of 259 FH heterozygotes and 208 nonFH controls. CETP mass was measured by enzyme-linked immunosorbent assay in a subgroup of 240 participants, which included 120 FH patients matched with 120 controls. As compared with controls, FH subjects had an 11% higher CETP mass. Moreover, LDL-peak particle diameter (LDL-PPD) was significantly smaller in FH heterozygotes than in controls (258.1 +/- 4.8 vs. 259.2 +/- 4.1 A; P = 0.01) after adjustment for covariates. There was also an inverse relationship between LDL-PPD and CETP mass (R = -0.15; P = 0.02), and this relationship was abolished by adjustment for the FH/control status, indicating that LDL-PPD changes in FH are mediated, at least in part, by an increase in plasma CETP mass concentrations. These results suggest that increased plasma CETP mass concentrations could lead to significant LDL particle remodeling in FH heterozygotes and could contribute to the pathogenesis of atherosclerosis. 相似文献
20.
Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia 总被引:60,自引:0,他引:60
A defective LDL receptor gene in a child with familial hypercholesterolemia produces a receptor precursor that is 50,000 daltons larger than normal (apparent Mr 170,000 vs. 120,000). The elongated protein resulted from a 14 kilobase duplication that encompasses exons 2 through 8. The duplication arose from an unequal crossing-over between homologous repetitive elements (Alu sequences) in intron 1 and intron 8. The mutant receptor has 18 contiguous cysteine-rich repeat sequences instead of the normal nine. Seven of these duplicated repeats are derived from the ligand-binding domain, and two repeats are part of the epidermal growth factor precursor homology region. The elongated receptor undergoes normal carbohydrate processing, its apparent molecular weight increases to 210,000, and the receptor reaches the cell surface where it binds reduced amounts of LDL but undergoes efficient internalization and recycling. The current findings support an evolutionary model in which homologous recombination between repetitive elements in introns leads to exon duplication during evolution of proteins. 相似文献