首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolonged exposure to microgravity, as well as its ground-based analog, head-down bed rest (HDBR), reduces orthostatic tolerance in humans. While skin surface cooling improves orthostatic tolerance, it remains unknown whether this could be an effective countermeasure to preserve orthostatic tolerance following HDBR. We therefore tested the hypothesis that skin surface cooling improves orthostatic tolerance after prolonged HDBR. Eight subjects (six men and two women) participated in the investigation. Orthostatic tolerance was determined using a progressive lower-body negative pressure (LBNP) tolerance test before HDBR during normothermic conditions and on day 16 or day 18 of 6° HDBR during normothermic and skin surface cooling conditions (randomized order post-HDBR). The thermal conditions were achieved by perfusing water (normothermia ~34°C and skin surface cooling ~12-15°C) through a tube-lined suit worn by each subject. Tolerance tests were performed after ~30 min of the respective thermal stimulus. A cumulative stress index (CSI; mmHg LBNP·min) was determined for each LBNP protocol by summing the product of the applied negative pressure and the duration of LBNP at each stage. HDBR reduced normothermic orthostatic tolerance as indexed by a reduction in the CSI from 1,037 ± 96 mmHg·min to 574 ± 63 mmHg·min (P < 0.05). After HDBR, skin surface cooling increased orthostatic tolerance (797 ± 77 mmHg·min) compared with normothermia (P < 0.05). While the reduction in orthostatic tolerance following prolonged HDBR was not completely reversed by acute skin surface cooling, the identified improvements may serve as an important and effective countermeasure for individuals exposed to microgravity, as well as immobilized and bed-stricken individuals.  相似文献   

2.
3.
Four healthy Japanese males volunteered as subjects. They were exposed to hot environment of 50 degrees C with 50% relative humidity for 61 minutes immediately after the precooling where they rested in a 10 degrees C for 30 minutes. Their physiological data were compared with that of a previous report (Iwanaga et al., 1983), in which we studied the physiological responses of the same subjects at rest in a 50 degrees C without precooling in summer and winter. After precooling (PC), all the four subjects completed heat exposure for 61 minutes. But without precooling in summer (NC), two of the subjects stopped heat exposure before 61 minutes because of hyperthermia. Rectal temperature (TR) was lower in PC than in NC before and during heat exposure. During heat exposure, TR in PC had risen at the 30th minute, but TR in NC at 20th minute. Whereas there was no difference in heart rate (HR) during heat exposure between summer and winter, in PC HR remained lower than in NC because rising time of HR was prolonged during heat exposure.  相似文献   

4.
The objective of this study was to evaluate the changes in the portal vein cross-sectional area (PV CSA) and flow during a stand test associated with orthostatic intolerance. Eighteen subjects underwent a 90-day head-down tilt (HDT) bed rest at 6 degrees: 9 controls (Con) and 9 with flywheel exercise countermeasures (CM). At post-HDT, nine subjects (5 CM, 4 Con) were tolerant, and nine were intolerant. The PV CSA was measured by echography. We found that at HDT day 85, the PV CSA at rest had increased less in the CM subjects than in the Con (+12 vs. +27% from pre-HDT supine; P < 0.05), whereas it increased similarly in tolerant and intolerant subjects (23 and 16%, respectively). Two days after the HDT, there was a decrease in the PV CSA supine compared with the pre-HDT PV CSA supine that was similar for all groups (Con: -11%, CM: -21%; tolerant: -10%, intolerant: -16%; P < 0.05). The PV CSA decreased significantly less from supine to standing in the Con than in the CM group (-2 vs. -10% compared with the pre-HDT stand test; P < 0.05). The PV CSA also decreased significantly from supine to standing compared with the pre-HDT stand test in the tolerant group but not in the intolerant group (-20 vs. +2%; P < 0.05). From these findings, we conclude the following. 1) Because the portal vein is the only output from the splanchnic vascular area, we suggest that the lower reduction in the PV CSA and flow associated with orthostatic intolerance was related to a lower splanchnic arterial vasoconstriction. 2) The flywheel exercise CM helped to reduce the distention of the splanchnic network at rest and to maintain partially the splanchnic vasoconstriction, but it did not reduce the orthostatic intolerance.  相似文献   

5.
6.
7.
Healthy males were tested for orthostatic tolerance during and following 21 days head-down bed rest. ECG and blood pressure were measured. Ten out of the 15 subjects were able to complete the head-up tilt (HUT) test following bed rest, and changes in heart rate dynamics and blood pressure were observed in both finishers and non-finishers. Specific results are presented and discussed.  相似文献   

8.
Heart rate variability of 27 young (10- to 11-year-old) athletes (ice hockey players) was studied. Special autonomic regulatory mechanisms that function both at a supine position and during active orthostatic test were found, which probably reflect the adaptation of the cardiovascular system to sports activity.  相似文献   

9.
Orthostatic intolerance (OI) is a major problem following spaceflight, and, during flight, astronauts also experience sleep restriction. We hypothesized that sleep restriction will compound the risk and severity of OI following simulated microgravity and exaggerate the renal, cardioendocrine, and cardiovascular adaptive responses to it. Nineteen healthy men were equilibrated on a constant diet, after which they underwent a tilt-stand test. They then completed 14-16 days of simulated microgravity [head-down tilt bed rest (HDTB)], followed by repeat tilt-stand test. During HDTB, 11 subjects were assigned to an 8-h sleep protocol (non-sleep restricted), and 8 were assigned to a sleep-restricted protocol with 6 h of sleep per night. During various phases, the following were performed: 24-h urine collections, hormonal measurements, and cardiovascular system identification. Development of presyncope or syncope defined OI. There was a significant decrease in time free of OI (P = 0.02) and an increase in OI occurrence (P = 0.06) after HDTB among all subjects. However, the increase in OI occurrence did not differ significantly between the two groups (P = 0.60). The two groups also experienced similar physiological changes with HDTB (initial increase in sodium excretion; increased excretion of potassium at the end of HDTB; increase in plasma renin activity secretion without a change in serum or urine aldosterone). No significant change in autonomic function or catecholamines was noted. Simulated microgravity leads to increased OI, and sleep restriction does not additively worsen OI in simulated microgravity. Furthermore, conditions of sleep restriction and nonsleep restriction are similar with respect to renal, cardioendocrine, and cardiovascular responses to simulated microgravity.  相似文献   

10.
A temperate environment heat tolerance test (HTT) was formerly reported (Shvartz et al. 1977b) to distinguish heat acclimatized humans from former heat stroke patients. The purpose of this investigation was to evaluate the ability of HTT to measure acute individual changes in the HR and Tre responses of normal subjects, induced by classical heat acclimation procedures, thereby assessing the utility and sensitivity of HTT as a heat tolerance screening procedure. On day 1, 14 healthy males performed HTT (23.2 +/- 0.5 degrees C db, 14.9 +/- 0.5 degrees C wb) by bench stepping (30 cm high, 27 steps x min-1) for 15 min at 67 +/- 3% VO2max. On days 2-9, all subjects underwent heat acclimation (41.2 +/- 0.3 degrees C db, 28.4 +/- 0.3 degrees C wb) via treadmill exercise. Heat acclimation trials (identical on days 2 and 9) resulted in significant decreases in HR (170 +/- 3 vs 144 +/- 5 beats x min-1), Tre (39.21 +/- 0.09 vs 38.56 +/- 0.17 degrees C), and ratings of perceived exertion; plasma volume expanded 5.2 +/- 1.7%. On day 10, subjects repeated HTT; day 1 vs day 10 HR were statistically similar (143 +/- 6 vs 137 +/- 6 beats x min-1, p greater than 0.05) but Tre decreased significantly (37.7 +/- 0.1 vs 37.5 +/- 0.1 degrees C, p less than 0.05). Group mean HTT composite score (day 1 vs day 10) was unchanged (63 +/- 5 vs 72 +/- 6, p greater than 0.05), and individual composite scores indicated that HTT did not accurately measure HR and Tre trends at 41.2 +/- degrees C in 6 out of 14 subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The purpose of the present study was to investigate the changes of orthostatic tolerance and cardiac function during 21 d head-down tilt (HDT) bed rest and effect of lower body negative pressure in the first and the last week in humans. Twelve healthy male volunteers were exposed to -6 degrees HDT bed rest for 21 d. Six subjects received -30 mmHg LBNP sessions for 1 h per day from the 1st to the 7th day and from the 15th to the 21st day of the HDT, and six others served as control. Orthostatic tolerance was assessed by means of standard tilt test. Stroke volume (SV), cardiac output (CO), preejection period (PEP) and left ventricular ejection time (LVET) were measured before and during HDT. Before HDT, all the subjects in the two groups completed the tilt tests. After 10 d and 21 d of HDT, all the subjects of the control group and one subject of the LBNP group could not complete the tilt test due to presyncopal or syncopal symptoms. The mean upright time in the control group (15.0 +/- 3.2 min) was significantly shorter than those in the LBNP group (19.7 +/- 0.9 min). SV and CO decreased significantly in the control group on days 3 and 10 of HDT, but remained unchanged throughout HDT in the LBNP group. A significant increase in PEP/LVET was observed on days 3 and 14 of HDT in both groups. The PEP/LVET in the LBNP group was significantly lower on day 3 of HDT, while LVET in the LBNP group was significantly higher on days 3, 7 and 14 of HDT than those in the control group. The results of this study suggest that brief daily LBNP sessions used in the first and the last weeks of 21 d HDT bed rest were effective in diminished the effect of head-down tilt on orthostatic tolerance, and LBNP might partially improve cardiac pumping function and cardiac systole function.  相似文献   

12.
The effects of modafinil on heat thermoregulatory responses were studied in 10 male subjects submitted to a sweating test after taking 200 mg of modafinil or placebo. Sweating tests were performed in a hot climatic chamber (45 degrees C, relative humidity <15%, wind speed = 0.8 m x s(-1), duration 1.5 h). Body temperatures (rectal (Tre) and 10 skin temperatures (Tsk)), sweat rate, and metabolic heat production (M) were studied as well as heart rate (HR). Results showed that modafinil induced at the end of the sweating test higher body temperatures increases (0.50 +/- 0.04 versus 0.24 +/- 0.05 degrees C (P < 0.01) for deltaTre and 3.64 +/- 0.16 versus 3.32 +/- 0.16 degrees C (P < 0.05) for deltaTsk (mean skin temperature)) and a decrease in sweating rate throughout the heat exposure (P < 0.05) without change in M, leading to a higher body heat storage (P < 0.05). AHR was also increased, especially at the end of the sweating test (17.95 +/- 1.49 versus 12.52 +/- 1.24 beats/min (P < 0.01)). In conclusion, modafinil induced a slight hyperthermic effect during passive dry heat exposure related to a lower sweat rate, probably by its action on the central nervous system, and this could impair heat tolerance.  相似文献   

13.
14.
Substance P (SP) is a peptide neurotransmitter identified in many central and peripheral neural pathways. Its precise role in human physiology has been difficult to elucidate. We used the selective neurokinin 1 (NK1) antagonist aprepitant as a pharmacological probe to determine the role of endogenous SP in human cardiovascular regulation. We performed a randomized, double-blind, placebo-controlled, crossover trial in healthy subjects. Blockade of endogenous NK1 receptors reduced resting muscle sympathetic activity 38% (P=0.002), reduced systemic vascular resistance by 25% (P=0.021), and increased cardiac index by 47% (P=0.006). This constellation of changes did not, however, alter either blood pressure or heart rate in the supine position. NK1 antagonism also raised orthostatic heart rate change by 38% (P=0.023), although during the incremental postural adjustment on the tilt table neither heart rate nor blood pressure was altered significantly. Despite a mildly attenuated vagal baroreflex with SP blockade, the depressor and pressor responses to nitroprusside and phenylephrine did not differ compared with placebo, suggesting other compensatory mechanisms. NK1 blockade manifests as a decrease in muscle sympathetic nerve activity and systemic vascular resistance. Our study suggests SP exerts a tonic enhancement of sympathetic outflow to some cardiovascular structures via its modulation of the NK1 receptor. Most likely, this ubiquitous neurotransmitter exerts effects at multiple sites that, in the aggregate, are relatively well compensated under many circumstances but may emerge with perturbations. This study is consistent with a role for SP afferents in supporting peripheral vascular resistance.  相似文献   

15.
16.
In this article, we intentionally present exclusively the results of our recent studies of arterial and venous hemodynamics as predictors of human orthostatic tolerance during space flight and after the return to Earth. The possibility of in-flight orthostatic tolerance prediction by arterial hemodynamic responses to the lower body negative pressure (LBNP) and venous hemodynamic changes in response to occlusion of the lower extremities is demonstrated. For the first time, three levels of cerebral blood flow deficits during the determination of orthostatic tolerance in the course of the LBNP test performed in microgravity. We offer quantitative arguments for the dependence of the cerebral blood flow deficit on the degree of tolerance of the LBNP test. Patterns of arterial hemodynamics during LBNP were successfully used to diagnose the actual orthostatic tolerance and to follow its trend during flight, which testifies to the possibility of predicting orthostatic tolerance changes in an individual cosmonaut during space flight. Occlusion plethysmography of the legs revealed three levels of response of the most informative venous parameters (capacity, distensibility, and rate of filling) of the lower extremities correlated to the severity of decrease in orthostatic tolerance.  相似文献   

17.
The purpose of this investigation was to clarify the characteristics of body temperature regulation in paraplegics due to spinal cord injury (SCI) during an arm cranking exercise in a hot environment. Twelve paraplegics with lesions located between Th3 and L1,2 and seven able-bodied subjects (AB) participated in this study. The subjects were exposed to a hot (33 degrees C) or a moderate temperature (25 degrees C) environment for one hour and during the last 10 min of the exposure, the subjects performed arm cranking exercises at an exercise intensity of 40 W. The skin temperatures at the chest, the upper arm, the thigh and the calf, the tympanic membrane temperature (Tty), and the skin blood flow of the thigh (SBFT) were continuously monitored during the experiment. Although no systematical variation was found in the Tty at 25 degrees C, the Tty at 33 degrees C in paraplegics during exercise was significantly greater than that at rest (P < 0.01), which indicated a pronounced heat stress for paraplegics at 33 degrees C. SBFT of paraplegics with high lesions of the SCI remained unchanged during the experiment at 25 degrees C and 33 degrees C, while paraplegics with low lesions in this study showed consecutive increases in SBFT during exercise in both environmental conditions similar to AB. The increased core temperature in paraplegics with high lesions was considered to be due to a lack of sweat response and vasomotor activity in the paralyzed area. On the basis of the findings in this study, it can be suggested that high core temperature without any increment of SBFT may be characterized as body heat balance of paraplegics with high lesions during exercise in a hot environment.  相似文献   

18.
19.
To this day, many studies have suggested that prolonged bed rest (BR) affects on muscle mass and strength not only in gravity muscles but also in ungravity muscles. However, it is still unclear whether the decrease in regional muscle strength after BR is due to the alterations in the corresponding muscle mass, or not. On the other hand, if BR decreases the mass of antigravity muscles (UGM) as well as muscle strength and then increases tissue compliance of the antigravity muscles, orthostatic tolerance capacity will be decreased by the reduction in cardiac output (CO) in spite of the increase in myocardial contractility because the more decrease in venous return due to the more increase in blood pooling within the compliant tissues of the lower body. However, this is also unclear. To make these questions clear, the present study investigated the regional muscle mass and strength and orthostatic tolerance capacity before and after 20 days of bed rest in young subjects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号