首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many bird species, eggs in a brood hatch within days of each other, leading to a size asymmetry detrimental to younger siblings. Hatching asynchrony is often thought of as an adaptive strategy, and the most widely studied hypothesis in relation to this is the ‘brood reduction hypothesis’. This hypothesis states that when food resources are unpredictable, hatching asynchrony will allow the adjustment of the brood size maximizing fledging success and benefitting parents. The Magellanic penguin Spheniscus magellanicus is an appropriate species to test this hypothesis because it has a 2‐egg clutch that hatches over a 2‐d interval with a broad range of variation (–1 to 4 d), it shows facultative brood reduction, and food abundance between breeding seasons is variable. We performed a manipulative study at Isla Quiroga, Argentina, during three breeding seasons (2010–2012) by forcing broods to hatch synchronously (0 d) or asynchronously (2 or 4 d). Years were categorized based on estimated food abundance. Our study provided mixed results because in the low estimated food abundance year asynchronous broods did not have higher nestling survival than synchronous broods, and the second‐hatchling in asynchronous broods did not die more often than those in synchronous broods. On the other hand, younger siblings of 4‐d asynchronous broods starved earlier than those of synchronous broods, and 2‐d asynchronous broods fledged heavier young than synchronous broods. Asynchronous hatching would seem to benefit reproduction in this species, not with respect to survival, but in terms of the advantages it can accord to nestlings and, in terms of lower costs, for parents raising nestlings.  相似文献   

2.
Reviews of hatching asynchrony in birds recommended more studies on intraspecific variation in the extent of hatching asynchrony. We examined intraspecific variation in clutch size, laying chronology, onset of incubation, incubation period, and hatching asynchrony in burrowing owls (Athene cunicularia) in the Imperial Valley of California. Mean clutch size was 7.4 eggs and owls averaged 0.5 eggs laid per day. Females varied considerably in laying interval and onset of incubation (range?=?1st to 9th egg in the clutch). The mean incubation period was 21.9?days. Hatching interval also varied greatly among females ( $ \overline{x} $ ?=?0.8, range 0.1–2.0?days between successively hatched eggs). Past burrowing owl studies have largely overlooked the substantial intraspecific variation in these traits or have reported estimates that differ from ours. Future studies designed to identify the environmental factors that explain the large intraspecific variation in these traits will likely provide insights into the constraints on local abundance.  相似文献   

3.
We examined if laying intervals and hatching asynchronies are related in a chinstrap penguin (Pygoscelis antarctica) population in the South Orkneys. The lack of association between the two variables, as well as data on brood patch development, indicated that incubation did not begin immediately after the first egg was laid. This suggests that longer laying intervals may be compensated by longer delays in the onset of full incubation. Hatching asynchrony increased with within-clutch egg size asymmetry, decreased with breeding date, and was related to the laying order of the eggs according to size. However, only egg-size asymmetry remained significant when controlling for the other variables. We conclude that more asymmetric clutches were more asynchronous, although a large part of the variation in hatching asynchrony remains unexplained.  相似文献   

4.
In birds, hatching failure is pervasive and incurs an energetic and reproductive cost to breeding individuals. The egg viability hypothesis posits that exposure to warm temperatures prior to incubation decreases viability of early laid eggs and predicts that females in warm environments minimize hatching failure by beginning incubation earlier in the laying period, laying smaller clutches, or both. However, beginning incubation prior to clutch completion may incur a cost by increasing hatching asynchrony and possibly brood reduction. We examined whether Florida scrub jays (Aphelocoma coerulescens) began incubation earlier relative to clutch completion when laying larger clutches or when ambient temperatures increased, and whether variation in incubation onset influenced subsequent patterns of hatching asynchrony and brood reduction. We compared these patterns between a suburban and wildland site because site-specific differences in hatching failure match a priori predictions of the egg viability hypothesis. Females at both sites began incubation earlier relative to clutch completion when laying larger clutches and as ambient temperatures increased. Incubation onset was correlated with patterns of hatching asynchrony at both sites; however, brood reduction increased only in the suburbs, where nestling food is limiting, and only during the late nestling period. Hatching asynchrony may be an unintended consequence of beginning incubation early to minimize hatching failure of early laid eggs. Food limitation in the suburbs appears to result in increased brood reduction in large clutches that hatch asynchronously. Therefore, site-specific rates of brood reduction may be a consequence of asynchronous hatching patterns that result from parental effort to minimize hatching failure in first-laid eggs. This illustrates how anthropogenic change, such as urbanization, can lead to loss of fitness when animals use behavioral strategies intended to maximize fitness in natural landscapes.  相似文献   

5.
HATCHING ASYNCHRONY IN ALTRICIAL BIRDS   总被引:6,自引:0,他引:6  
1. The review aims to provide a simple conceptual framework on which to place recent studies of hatching asynchrony in altricial birds and to assess the evidence used in support of specific hypotheses. 2. Hatching asynchrony arises bsecause parents start incubation before laying is complete, but the precision of parental control is largely unknown. 3. Hypothesses concerning the functional significance of hatching asynchrony fall into four broad types. Hatching asynchrony might: (i) arise because of selection on the timing of events during the nesting period; (ii) facilitate the adaptive reduction in brood size; (iii) increase the energetic efficiency of raising the brood, or (iv) result from environmental or phylogenetic constraints. 4. The incubation pattern could function to minimize the losses of eggs, nestlings or adults to predators (or climatic sources of mortality), particularly in species which cannot actively defend their nest. The best evidence comes from comparative studies of hatching asynchrony. Early incubation might also be favoured if the food supply declines sharply through the breeding season, although the evidence is weak and indirect, or if there is a risk of brood parasitism. In species in which only the female incubates, early incubation could ‘force’ the male to invest more in the nestlings, but this idea remains to be tested. Males may be constrained by the risk of cuckoldry to delay incubation until laying is complete. 5. Hatching asynchrony could be adaptive by enabling the efficient reduction of brood size if food proves short after hatching (primarily because of a shortage of food in the environment or possibly because of a large proportion of ‘expensive’ nestlings in the brood in species which are sexually dimorphic). Observational evidence is often consistent with this hypothesis but few experimental studies provide adequate tests. Brood reduction could be adaptive in species (primarily eagles and pelecaniformes) which lay an extra egg to act as insurance against hatching failure, and again hatching asynchrony might facilitate brood reduction, although there are few experimental tests on such species. Hatching asynchrony might also enable sex ratio manipulation through selective brood reduction, although there is as yet no clear supportive evidence. 6. Ins species in which young have a marked peak in energy demand during the period of parental care, hatching asynchrony can reduce the peak demand of the brood, which might allow the parents to raise more healthy young. In many species such savings are likely to be small or absent. There is some behavioural evidence that hatching asynchrony can reduce fighting amongst nestlings and therefore lead to the more efficient use of energy by the brood. In general this effect seems small and the only energetic study found no difference in the energy requirements of synchronous and asynchronous broods. Other possible energetic advantages to hatching asynchrony have not been tested. 7. Environmental conditions during laying can influence both egg size and laying interval in aerial insectivores, and might directly influence incubation in this and other groups. Thus some variation in hatching asynchrony and the relative size of siblings is probably non-adaptive. The variability of incubation pattern within and across species suggests that hatching asynchrony is not under strong phylogenetic constraint. 8. The hypotheses about the adaptive significance of hatching asynchrony are complementary rather than mutually exclusive: within a species, several selective pressures could influence the optimal incubation pattern, and the relative importance of selective pressures will differ among species. Furthermore one should expect that the incubation pattern and parent–offspring interactions will be coadapted to maximize brood productivity.  相似文献   

6.
The amount of time a bird allocates to incubation is likely to be limited by energetic constraints. If food is abundant, energetic constraints may be reduced and the time spent incubating (incubation attendance) may increase. Moreover, the onset of incubation in relation to clutch completion may be advanced, resulting in a higher degree of hatching asynchrony. We measured the effect of experimentally increased food availability on incubation attendance and an estimate of hatching asynchrony in the Australian reed warbler Acrocephalus australis . Supplementary food was provided every other day, from a few days before the start of egg laying until just prior to hatching. Incubation attendance was measured with temperature loggers at nests receiving supplementary food and control nests. Hatching asynchrony was inferred from mass and size differences between siblings shortly after hatching. We found that 1) food supplementation resulted in an increase in incubation attendance, when comparing both nests receiving supplementary food to control nests as well as feeding to non-feeding days in nests receiving supplementary food, and 2) food supplementation resulted in a greater hatching asynchrony, without affecting clutch size, average egg volume or the likelihood of eggs hatching. This suggests that food availability acts in a proximate way to modify the extent of incubation attendance and hatching asynchrony. We discuss the adaptive significance of increased incubation attendance and a shift in the degree of hatching asynchrony in relation to food availability.  相似文献   

7.
D. M. BRYANT 《Ibis》1978,120(1):16-26
Nestling birds may differ in size and weight on the first day a clutch is fully hatched, mainly because eggs within clutches hatch over a period of several days. This asynchronous pattern of hatching is usually thought to facilitate brood reduction when the food supply is unpredictably restricted. The purpose of the study reported here was to examine the contribution of egg-weight, clutch-size, hatching spread, food supply and season to weight differences in newly hatched broods of the House Martin. At laying, heavy eggs had a greater moisture and dry weight content than light eggs and immediately before hatching there was a correlation between initial egg-weight and the dry weight of embryo and yolk. Heavier clutches also tended to give rise to heavier hatchlings. There was, however, no correlation of fresh egg-weight with the dry weight of embryos alone and the relative dry weight of embryos in a clutch was dependent on laying sequence. Hatching spread (the number of days between the emergence from the egg of the first and the last hatchling of the clutch) was 0.75 ± 0.46 days for clutches of two and increased with the size of the clutch up to 1.80 ± 0.79 days for clutches of five. When food was scarce during laying, hatching spread was greater. Weight difference in newly hatched broods was correlated with hatching spread and moreover in multivariate analysis was also correlated with periods of food scarcity during laying. It was concluded that all examples of weight hierarchies among hatchlings should not be considered adaptive; in some cases they may be imposed by food scarcity. This can lead to mortality of the runs even if food is plentiful. When the weight hierarchy is not adversely accentuated by food scarcity it may function as previously suggested, to allow brood reduction. Alternatively, particularly among House Martins, it may spread out the peak food needs of individual nestlings thereby spreading the demand on the adults.  相似文献   

8.
Intraclutch egg size variation may non‐adaptively result from nutritional/energetic constraints acting on laying females or may reflect adaptive differential investment in offspring in relation to laying/hatching order. This variation may contribute to size hierarchies among siblings already established due to hatching asynchrony, and resultant competitive asymmetries often lead to starvation of the weakest nestling within a brood. The costs in terms of chick mortality can be high. However, the extent to which this mortality is egg size‐mediated remains unclear, especially in relation to hatching asynchrony which may operate concomitantly. I assessed effects of egg size and hatching asynchrony on nestling development and survival of Herring Gulls (Larus argentatus), where the smaller size and later hatching of c‐eggs may represent a brood‐reduction strategy. To analyze variation in egg size, I recorded the laying order and laying date of 870 eggs in 290 three‐egg clutches over a 3‐yr period (2010–2012). I measured hatchlings and monitored growth and survival of 130 chicks from enclosed nests in 2011 and 2012. The negative effect of laying date (β = ?0.18 ± SE 0.06, P = 0.002) on c‐egg size possibly reflected the fact that late breeders were either low quality or inexperienced females. The mass, size, and condition of hatchling Herring Gulls were positively related to egg size (all P < 0.0001). C‐chicks suffered from increased mortality risk during the first 12 d, identified as the brood‐reduction period in my study population. Although intraclutch variation in egg size was not directly related to patterns of chick mortality, I found that smaller relative egg size interactively increased differences in relative body condition of nestlings, primarily brought about by the degree of hatching asynchrony during this brood‐reduction period. Thus, the value of relatively small c‐eggs in Herring Gulls may lie in reinforcing brood reduction through effects on nestling body condition. A reproductive strategy Herring Gulls might have adopted to maintain a three‐egg clutch, but that also enables them to adjust the number of chicks they rear relative to the prevailing environmental conditions and to their own condition during the nestling stage.  相似文献   

9.
We studied the reproductive biology of a box-nesting population of Tree Swallows Tachycineta bicolor in southeastern Wisconsin, USA. We were interested particularly in the relationship between laying order and hatching order and the extent to which each was a predictor of nestling body mass. We found that laying order was a significant predictor of hatching order. Laying and hatching order were related to nestling mass at 4 days of age and to a lesser extent at 12 days of age. In addition, we investigated the effects of natural variation in hatching asynchrony. Hatching asynchrony was positively related to the range of nestling body masses within a brood at days 4 and 12. The probability that brood reduction occurred was also positively related to the degree of hatching asynchrony, though this effect was significant only at day 4. Our results suggest that laying order and hatching order have their greatest effects on nestling Tree Swallows early in the nestling period.  相似文献   

10.
The onset of incubation before the end of laying imposes asynchrony at hatching and, therefore, a size hierarchy in the brood. It has been argued that hatching asynchrony might be a strategy to improve reproductive output in terms of quality or quantity of offspring. However, little is known about the mediating effect of hatching asynchrony on offspring quality when brood reduction occurs. Here, we investigate the relationship between phenotypic quality and hatching asynchrony in Common Kestrel Falco tinnunculus nestlings in Spain. Hatching asynchrony did not increase breeding success or nestling quality. Furthermore, hatching asynchrony and brood reduction had different effects on nestlings’ phytohaematogglutinin (PHA)‐mediated immune response and nestling growth. In asynchronous and reduced broods (in which at least one nestling died), nestlings showed a stronger PHA‐mediated immune response and tended to have a smaller body size compared with nestlings raised in synchronous and reduced broods. When brood reduction occurred in broods hatched synchronously, there was no effect on nestling size, but nestlings had a relatively poor PHA‐mediated immune response compared with nestlings raised in asynchronous and reduced broods. We suggest that resources for growth can be directed to immune function only in asynchronously hatched broods, resulting in improved nestling quality, as suggested by their immune response. We also found that males produced a greater PHA‐mediated immune response than females only in brood‐reduced nests without any effect on nestling size or condition, suggesting that females may trade off immune activities and body condition, size or weight. Overall, our results suggest that hatching pattern and brood reduction may mediate resource allocation to different fitness traits. They also highlight that the resolution of immune‐related trade‐offs when brood reduction occurs may differ between male and female nestlings.  相似文献   

11.
Wellicome TI 《Oecologia》2005,143(2):326-334
In most animals, siblings from a given reproductive event emerge over a very short period of time. In contrast, many species of birds hatch their young asynchronously over a period of days or weeks, handicapping last-hatched chicks with an age and size disadvantage. Numerous studies have examined the adaptive significance of this atypical hatching pattern, but few have attempted to explain the considerable intrapopulation variation that exists in hatching asynchrony. I explored proximate determinants of hatching asynchrony by monitoring 112 Burrowing Owl (Athene cunicularia) nests in the grasslands of southern Saskatchewan, Canada, over 4 years. Age disparities between first- and last-hatched siblings (i.e., hatching spans) varied considerably, ranging between 1 and 7 days (mode = 4 days). These hatching spans increased with increased hatching success. Hatching spans also increased with larger clutches, but the increase was less than predicted given the increased time required to lay more eggs. Hatching span was unrelated to number of prey cached in the nest during egg laying (an index of food availability), and was unaltered by a year of super-abundant prey. Furthermore, pairs given extra food during laying had hatching spans equal to those of unsupplemented control pairs. These results were inconsistent with both the energy constraint and facultative manipulation hypotheses, which predict that hatching asynchrony should vary with the level of food during laying, when incubation onset is determined. Burrowing Owls were apparently free of food limitation early in breeding, yet may not have been able to optimize hatching spans because food conditions during laying were largely unrelated to food conditions during brooding. Thus, one of the premises for facultative manipulation of hatching asynchrony—that laying females are able to forecast post-hatch food conditions—may not have been met for this population of Burrowing Owls.  相似文献   

12.
Growth is a fundamental life history trait in all organisms and is closely related to individual fitness. In altricial birds, growth of many traits is restricted to the short period between hatching and fledging and strongly depends on the amount of food that parents deliver and the extent of hatching asynchrony. However, empirical studies of energy allocation to growth of different body size traits as a function of hatching asynchrony are scarce. We studied growth and mortality of Eurasian Hoopoe Upupa epops, a species with a long breeding season and high brood size variance, whose nestlings show pronounced hatching asynchrony, in order to test how hatching asynchrony affects different growth traits in the context of territory quality, season and brood size. The growth of five body traits (body mass, and lengths of tarsus, third primary, bill and longest crest feather) was investigated to understand how it was affected by brood size, hatching date and order, and territory quality. In total, 241 nestlings from 39 nests were measured every 4 days in 2014 in south‐western Switzerland. Brood size, hatching date and hatching order had the strongest influence on growth trajectories, although tarsus growth was only marginally affected by these variables. Nestlings that hatched earlier than their siblings were heavier and had longer third primaries, bills and crest feathers compared with later‐hatched siblings. In territories of high quality, hatching order differences disappeared for body mass growth, but persisted for lengths of third primary, bill and crest feathers. Brood size was inversely associated with third primary, bill and crest feather lengths, but positively associated with body mass. Nestling mortality was higher in later‐hatched nestlings and in broods that were raised in territories of lower quality. Our study shows that in nestlings, energy was allocated differentially between body traits and this allocation interacted with hatching order and territory quality. Rapid mass gain by nestlings was prioritized in order to increase competitive ability. Our results provide support for the brood reduction hypothesis as an explanation of hatching asynchrony in Hoopoes.  相似文献   

13.
In birds, the adaptive significance of hatching asynchrony has been under debate for many years and the parental effects on hatching asynchrony have been largely assumed but not often tested. Some authors suggest that hatching asynchrony depends on the incubation onset and many factors have been shown to influence hatching asynchrony in different species. Our objective was to analyze the exact timing of the onset of incubation and if this affects hatching asynchrony; and, in addition, which other factors (brood patch development, incubation position, adult body condition, intra‐clutch egg dimorphism, laying date and year) affect hatching asynchrony in Magellanic penguins Spheniscus magellanicus. We first estimated the eggshell temperature at which embryo development starts, with a non‐destructive and novel method. We then recorded individual egg temperatures in 61 nests during incubation, and related them, and other breeding parameters, to hatching asynchrony. We also observed incubation positions in 307 nests. We found a significant positive relationship between hatching asynchrony and the temperature that the first‐laid egg experienced during egg laying and between hatching asynchrony and the initial brood patch area. We also found a negative relationship between hatching asynchrony and the difference in temperature between second and first‐laid eggs within a clutch, measured after the egg‐laying period was finished. We ruled out position of the eggs during incubation, adult body condition, egg volume, laying date, and study year as factors influencing hatching asynchrony. The egg temperature during laying and the difference in temperature between eggs of a clutch are determinants of hatching asynchrony in Magellanic penguins.  相似文献   

14.
C. J. Skead 《Ostrich》2013,84(4):213-221
Williams, A. J. &; Cooper, J. 1983. The Crowned Cormorant: breeding biology, diet, and offspring reduction strategy. Ostrich 54:213-219.

Crowned Cormorants Phalacrocorax coronatus were studied at Dassen and Marcus Islands. The most frequent clutch was three eggs. Egg size varied within clutches with first-laid eggs being largest and heaviest and subsequent eggs progressively smaller and lighter, The mean laying interval was 2,2 days, the mean laying-to-hatching interval was 23,0 days, and the hatching interval was one day. The normal incubation period was 22.4 days. The weight of hatchings was related to the position of the originating egg in the laying sequence. Chicks were fed within 24 h of hatching. Chick development is described over the first 35 days. One chick could fly at 35 days. Hatching success was 48,2%. Hatching success was greatest in second-laid eggs, least in last-laid eggs. The mean number of chicks hatched at a nest was two. Mean diving time was 23,5 s. Most food was fish, particularly klipfish Clinidae and pipefish Syngnathus, 60–160 mm long. The number of offspring produced can be related to food availability by interaction of difference in egg size, hatching asynchrony, and the preferential feeding by adults of the strongest-begging chick. There is a trend towards producing two chicks, normally those from the first two eggs to be laid.  相似文献   

15.
ABSTRACT

Capsule: Annual reproductive parameters of Little Egrets Egretta garzetta in an Atlantic coastal colony showed strong variation in a 20-year study, mainly due to extreme events.

Aims: To describe the breeding biology of Little Egrets in the Bay of Biscay and compare it with that of the Mediterranean basin. Also, to explore relationships between breeding parameters and colony size with some climatic indicators.

Methods: Phenology, number of nests, clutch size, number of hatchlings, brood size, and hatching and breeding success were recorded over 20 years.

Results: Median laying date of 214 nests was 1 May (range: 1 April–25 June) and 54% of the clutches were laid in the second half of April and the first half of May. Over the 20-year study period mean clutch size of 270 nests was 4.0, mean number of hatchlings was 3.1, and mean brood size was 2.3. Hatching success ranged from 46.1% to 100% and breeding success from zero to 100%. Number of nests was negatively associated with clutch and brood size. The highest clutch size and lowest brood size were recorded at the beginning of the season. Significant relationships were found between the number of hatchlings and the rainfall during the pre-breeding season, and between brood size and the summer rainfall.

Conclusions: Reproductive parameters showed significant variation over the study period, which highlights the importance of using long-term data sets. Breeding occurred one month later than in natural colonies of the Mediterranean basin. Negative relationships between the number of nests and clutch and brood size suggest some degree of density-dependent effects. Ranges of clutch size, number of hatchlings, and brood size were within those reported in Mediterranean populations. The effect of rainfall on reproductive parameters was weak. Extreme weather and predation events caused low rates of hatching and breeding success that affected the growth of the colony.  相似文献   

16.
  1. The rates of clutch size, brood size and brood-size fledged recorded during the period 1956≈63 (2 years interrupted) in the rural and the urban colony of the grey starling were analysed comparatively.
  2. The clutch size was significantly larger in the urban than in the rural one and the brood size was also larger significantly in the urban population. But, the difference in brood-size fledged was insignificant.
  3. This reflected that the hatching rate was similar in both colonies (the rates in total differed but possible unusual rate was included in the clutch size of 5 eggs) and this may be determined physiologically but not depending upon food supply since smaller clutches showed higher hatching rate.
  4. However, the fledging rate was higher in the rural and lower and more variable in the urban colony. This is apparently due to food which was nutritive animal food in the rural but largely mixed with fruits in the urban.
  5. The fledging rate was rather irregularly variable with brood size suggesting that this is dependent upon parents' adaptability in feeding. However, the rate of 100% fledging becomes higher from brood sizes of 6 and less chicks.
  6. Thus, in general larger clutch and brood sizes produced larger absolute numbers of chicks and chicks fledged respectively. But, 5 was the most frequent size in the clutch and brood sizes and 4 in the brood-size fledged.
  7. From the above, the ecological evolution of urban population was discussed.
  相似文献   

17.
Hatching asynchrony (extended hatching period) is apparently ubiquitous among altricial birds, and may represent a striking example of adaptive family planning. Research has focused on evaluating various benefits to resulting partial brood loss. Current conclusions fall into three major categories: that hatching asynchrony is (1) an adaptation to food availability, (2) a means of saving time, ultimately to increase lifetime reproductive success, or (3) a maladaptation. Almost every study develops a new explanation or qualifies an old one. Either most of them are wrong, or hatching asynchrony is an example of convergent evolution resulting in a behavioural trait serving many functions.  相似文献   

18.
We studied patterns of chick growth and mortality in relation to egg size and hatching asynchrony during two breeding seasons (1991 and 1992) in a colony of chinstrap penguins sited in the Vapour Col rookery, Deception Island, South Shetlands. Intraclutch variability in egg size was slight and not related to chick asymmetry at hatching. Hatching was asynchronous in 78% (1991) and 69% (1992) of the clutches, asynchrony ranging from 1 to 4 days (on average 0.9 in 1991 and 1.0 days in 1992). Chicks resulting from oneegg clutches grew better than chicks in families of two in 1991. In 1992, single chicks grew to the same size and mass at 46 days of age as chicks of broods of two, suggesting food limitation in 1991 but not in 1992. In 1991, asymmetry between siblings in mass and flipper length was significantly greater in asynchronous than in synchronous families during the initial guard stage, but these differences disappeared during the later créche phase. In 1992, asymmetry in body mass increased with hatching asynchrony and decreased with age. Only the effect of age was significant for flipper length and culmen. Asymmetries at 15 days were similar in both years, but significantly lower in 1992 than in 1991 at 46 days of age. There were relatively frequent reversals of size hierarchies during both phases of chick growth in the two years, reversals being more common in 1991 than in 1992 for small chicks. In 1991, survivors of brood reduction grew significantly worse than chicks in nonreduced broods. In both years, chicks of synchronous broods attained similarly large sizes before fledging as both A and B chicks of asynchronous broods. In 1991, chick mortality rate increased during the guard stage due to parental desertions, decreased during the transition to crèches (occurs at a mean age of 29 days) and returned to high constant levels during the crèche stage, when it is mostly due to starvation (in total 66% of hatched chicks survived to fledging). In contrast, in 1992, mortality was relatively high immediately after hatching and almost absent for chicks older than 3 weeks (87% of chicks survived to fledging). Mortality affected similarly one- and two-chick families. In 1991, asynchronous families suffered a significantly greater probability of brood reduction than synchronous families, but this probability was not significantly related to degree of asymmetry between siblings. No association between asynchrony and mortality was found in 1992. These results show that there is food limitation in this population during the crèche phase in some years, that asynchronous hatching does not facilitate early brood reduction and that it does not ensure stable size hierarchies between siblings. Brood reduction due to starvation is not associated to prior asymmetry and does not facilitate the survival or improve the growth of the surviving chick. Asynchronous hatching may be a consequence of thermal constraints on embryo development inducing incubation of eggs as soon as they are laid.  相似文献   

19.
Hatching asynchrony in birds produces an age and size hierarchyamong siblings. Later-hatching chicks have a competitive disadvantage,and brood reduction may occur when food availability is insufficientto raise all chicks. When early-hatched chicks fail to surviveor if the circumstances allow raising all chicks, mothers shouldreverse the disadvantage to later-hatched chicks. Increasingdeposition of maternal androgens with the laying sequence hasbeen suggested to compensate for detrimental effects of hatchingasynchrony, allowing a more precise adjustment of the survivalprobabilities of each chick. Here, we show for black-headedgulls that the increase in yolk testosterone with each successiveegg is greater when the mother incubates longer before clutchcompletion, which is the major determinant of the degree ofhatching asynchrony. This finding supports the idea that yolktestosterone has a compensatory function in the context of hatchingasynchrony. Our data further show that if the time needed tocomplete a clutch is lengthened, the developmental differencesdue to incubation between the first- and the last-laid eggsincrease. In addition, the onset of incubation before clutchcompletion occurs sooner as the breeding season progresses.Both long inter-egg intervals and the seasonal shift in incubationbehavior enhance the necessity of compensation for later-hatchingchicks. Indeed, yolk levels of testosterone increased more steeplyover the laying order, if the duration of the egg-laying periodwas extended and in later-laid clutches. We suggest that prolactinplays a key role in the adjustment of testosterone allocationto the incubation pattern.  相似文献   

20.
Hatching asynchrony in avian species generally leads to a size hierarchy among siblings, favouring the first-hatched chicks. Maternally deposited hormones affect the embryo and chick's physiology and behaviour. It has been observed that progesterone, a hormone present at higher levels than other steroid hormones in egg yolks, is negatively related to body mass in embryos, chicks and adults. A differential within-clutch progesterone deposition could therefore be linked to the size hierarchy between siblings and to the resulting brood reduction. We tested whether yolk progesterone levels differed between eggs according to future parental ability to feed the entire clutch in wild rockhopper penguins Eudyptes chrysocome. This species presents a unique reversed egg-size dimorphism and hatching asynchrony, with the larger second-laid egg (B-egg) hatching before the smaller first-laid egg (A-egg). Yolk progesterone levels increased only slightly with female body mass at laying. However, intra-clutch ratios were not related to female body mass. On the other hand, yolk progesterone levels increased significantly with the date of laying onset for A-eggs while they decreased for B-eggs. Early clutches therefore had proportionally more progesterone in the B-egg compared to the A-egg while late clutches had proportionally less progesterone in the B-egg. We propose that females could strategically regulate yolk progesterone deposition within clutches according to the expected food availability during chick growth, an adaptive strategy to adjust brood reduction to conditions. We also discuss these results, relating to yolk progesterone, in the broader context of other yolk steroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号