首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2012 Nobel Prize for Chemistry was awarded to Robert Lefkowitz and Brian Kobilka “for study in G-protein-coupled receptors” (GPCR). In this review there are discussed and analyzed the most important discoveries of these Nobel Laureates dealing with study of structure and functions of GPCR. In the 1980s they were the first in the world to clone GPCR-the β2-adrenergic receptor. After 20 years the group headed by B. Kobilka first obtained this receptor in the crystallic form and established its three-dimensional structure. In the course of the studies, unique approaches were developed for purifications and crystallization of other receptors. In the 1980s, R. Lefkowitz and his colleagues discovered proteins β-arrestins that regulate the signal transduction realized via GPCR. Subsequently they showed β-arrestins to be the most important participants of signal transduction and to be responsible for transduction of signal from the receptor activated with hormone to intracellular signal cascades regardless of heterotrimeric G-proteins. These and other outstanding discoveries of R. Lefkowitz and B. Kobilka have become the ground of the new field of molecular biology and pharmacology-molecular endocrinology of GPCR.  相似文献   

2.
GPCR proteins represent the largest family of signaling membrane proteins in eukaryotic cells. Their importance to basic cell biology, human diseases, and pharmaceutical interventions is well established. Many crystal structures of GPCR proteins have been reported in both active and inactive conformations. These data indicate that agonist binding alone is not suffi cient to trigger the conformational change of GPCRs necessary for binding of downstream G-proteins, yet other essential factors remain elusive. Based on analysis of available GPCR crystal structures, we identifi ed a potential conformational switch around the conserved Asp2.50, which consistently shows distinct conformations between inactive and active states. Combining the structural information with the current literature, we propose an energy-coupling mechanism, in which the interaction between a charge change of the GPCR protein and the membrane potential of the living cell plays a key role for GPCR activation.  相似文献   

3.
G蛋白偶联受体(G protein-coupled receptor,GPCR)是含有七个跨膜螺旋的一类重要蛋白,是迄今为止发现的最大的多药物靶标受体超蛋白家族。例如,目前上市药物中有超过30%是以GPCR为靶点的。然而,与GPCR重要性形成强烈反差的是科学界对于其结构与功能的了解非常贫乏,主要原因是通过实验手段来获得GPCR的结构与功能信息极其困难。利用生物信息学方法从基因组规模的数据中识别GPCR并预测三维结构是可行途径之一。基于生物信息学的GPCR研究将为新型药物靶标的筛选和药物的开发提供一定的帮助。本文论述了几种较为典型的GPCR计算方法,并基于已有研究提出可能的创新性研究策略来解决GPCR蛋白识别、跨膜区定位、以及结构和功能预测等问题。  相似文献   

4.
Pleiotropic G proteins are essential for the action of hormones and neurotransmitters and are activated by stimulation of G protein-coupled receptors (GPCR), which initiates heterotrimer dissociation of the G protein, exchange of GDP for GTP on its Galpha subunit and activation of effector proteins. Regulator of G protein signaling (RGS) proteins regulate this cascade and can be recruited to the membrane upon GPCR activation. Direct functional interaction between RGS and GPCR has been hypothesized. We show that recruitment of GAIP (RGS19) by the dopamine D2 receptor (D2R), a GPCR, required the scaffold protein GIPC (GAIP-interacting protein, C terminus) and that all three were coexpressed in neurons and neuroendocrine cells. Dynamic translocation of GAIP to the plasma membrane and coassembly in a protein complex in which GIPC was a required component was dictated by D2R activation and physical interactions. In addition, two different D2R-mediated responses were regulated by the GTPase activity of GAIP at the level of the G protein coupling in a GIPC-dependent manner. Since GIPC exclusively interacted with GAIP and selectively with subsets of GPCR, this mechanism may serve to sort GPCR signaling in cells that usually express a large repertoire of GPCRs, G proteins, and RGS.  相似文献   

5.
G蛋白偶联受体(GPCR)是细胞膜上最大的一类受体,其通过构象变化激活下游G蛋白从而介导细胞响应多种来自内源和外界环境中的信号。自GPCR被发现以来,研究者就一直在努力解析GPCR的构象,x射线晶体衍射技术和GPCR蛋白质结晶技术的发展使得越来越多的GPCR单体在静息状态,以及与不同配体甚至G蛋白结合的晶体结构被成功解析。另一方面,FRET和电子显微技术的运用得到了GPCR二聚化和多聚化的多方面证据。本文将结合近年来该领域的进展,对GPCR寡聚体的结构和构象变化予以系统的综述,这些成果为研究GPCR的功能机制及其特异性的靶点药物开发提供了重要的基础。  相似文献   

6.
Specificity of transduction events is controlled at the molecular level by scaffold, anchoring, and adaptor proteins, which position signaling enzymes at proper subcellular localization. This allows their efficient catalytic activation and accurate substrate selection. A-kinase anchoring proteins (AKAPs) are group of functionally related proteins that compartmentalize the cAMP-dependent protein kinase (PKA) and other signaling enyzmes at precise subcellular sites in close proximity to their physiological substrate(s) and favor specific phosphorylation events. Recent evidence suggests that AKAP transduction complexes play a key role in regulating G protein-coupled receptor (GPCR) signaling. Regulation can occur at multiple levels because AKAPs have been shown both to directly modulate GPCR function and to act as downstream effectors of GPCR signaling. In this minireview, we focus on the molecular mechanisms through which AKAP-signaling complexes modulate GPCR transduction cascades.  相似文献   

7.
Specificity of transduction events is controlled at the molecular level by scaffold, anchoring, and adaptor proteins, which position signaling enzymes at proper subcellular localization. This allows their efficient catalytic activation and accurate substrate selection. A-kinase anchoring proteins (AKAPs) are group of functionally related proteins that compartmentalize the cAMP-dependent protein kinase (PKA) and other signaling enyzmes at precise subcellular sites in close proximity to their physiological substrate(s) and favor specific phosphorylation events. Recent evidence suggests that AKAP transduction complexes play a key role in regulating G protein-coupled receptor (GPCR) signaling. Regulation can occur at multiple levels because AKAPs have been shown both to directly modulate GPCR function and to act as downstream effectors of GPCR signaling. In this minireview, we focus on the molecular mechanisms through which AKAP-signaling complexes modulate GPCR transduction cascades.  相似文献   

8.
Receptors of the Fz (Frizzled) family initiate Wnt ligand-dependent signalling controlling multiple steps in organism development and carcinogenesis. Fz proteins possess seven transmembrane domains, and their signalling depends on heterotrimeric G-proteins in various organisms; however, Fz proteins constitute a distinct group within the GPCR (G-protein-coupled receptor) superfamily, and Fz signalling can be G-protein-independent in some experimental setups, leading to concerns about the GPCR nature of these proteins. In the present study, we demonstrate that mammalian Fz proteins act as GPCRs on heterotrimeric G(o/i) proteins. Addition of the Wnt3a ligand to rat brain membranes or cultured cells elicits Fz-dependent guanine-nucleotide exchange on G(o/i) proteins. These responses were sensitive to a Wnt antagonist and to pertussis toxin, which decouples the G(o/i) proteins from their receptors through covalent modification. The results of the present study provide the long-awaited biochemical proof of the GPCR nature of Fz receptors.  相似文献   

9.
G protein-coupled receptors (GPCRs) transduce a wide array of extracellular signals and regulate virtually every aspect of physiology. While GPCR signaling is essential, overstimulation can be deleterious, resulting in cellular toxicity or uncontrolled cellular growth. Accordingly, nature has developed a number of mechanisms for limiting GPCR signaling, which are broadly referred to as desensitization, and refer to a decrease in response to repeated or continuous stimulation. Short-term desensitization occurs over minutes, and is primarily associated with β-arrestins preventing G protein interaction with a GPCR. Longer-term desensitization, referred to as downregulation, occurs over hours to days, and involves receptor internalization into vesicles, degradation in lysosomes and decreased receptor mRNA levels through unclear mechanisms. Phosphorylation of the receptor by GPCR kinases (GRKs) and the recruitment of β-arrestins is critical to both these short- and long-term desensitization mechanisms. In addition to phosphorylation, both the GPCR and β-arrestins are modified post-translationally in several ways, including by ubiquitination. For many GPCRs, receptor ubiquitination promotes degradation of agonist-activated receptors in the lysosomes. Other proteins also play important roles in desensitization, including phosphodiesterases, RGS family proteins and A-kinase-anchoring proteins. Together, this intricate network of kinases, ubiquitin ligases, and adaptor proteins orchestrate the acute and prolonged desensitization of GPCRs.  相似文献   

10.
G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling.  相似文献   

11.
G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling.  相似文献   

12.
G-protein coupled receptor (GPCR) signaling represents one of the most conserved and ubiquitous means in mammalian cells for transferring information across the plasma membrane to the intracellular environment. Heterotrimeric G-protein subunits play key roles in transducing these signals, and intracellular regulators influencing the activation state and interaction of these subunits regulate the extent and duration of GPCR signaling. One class of intracellular regulator, the non-receptor activators of G-protein signaling (or AGS proteins), are the major focus of this review. AGS proteins provide a basis for understanding the function of heterotrimeric G-proteins in both GPCR-driven and GPCR independent cellular signaling pathways.  相似文献   

13.
Sherrill JD  Miller WE 《Life sciences》2008,82(3-4):125-134
Members of the herpesvirus family, including human cytomegalovirus (HCMV) and Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8), encode G protein-coupled receptor (GPCR) homologs, which strongly activate classical G protein signal transduction networks within the cell. In animal models of herpesvirus infection, the viral GPCRs appear to play physiologically important roles by enabling viral replication within tropic tissues and by promoting reactivation from latency. While a number of studies have defined intracellular signaling pathways activated by herpesviral GPCRs, it remains unclear if their physiological function is subjected to the process of desensitization as observed for cellular GPCRs. G protein-coupled receptor kinases (GRK) and arrestin proteins have been recently implicated in regulating viral GPCR signaling; however, the role that these desensitization proteins play in viral GPCR function in vivo remains unknown. Here, we review what is currently known regarding viral GPCR desensitization and discuss potential biological ramifications of viral GPCR regulation by the host cell desensitization machinery.  相似文献   

14.

Background

Heterotrimeric G proteins and regulators of G protein signaling (RGS) proteins are key downstream interacting partners in the G protein coupled receptor (GPCR) signaling pathway. The highly versatile GPCR transmembrane signaling system is a consequence of the coupling of a diverse set of receptors to downstream partners that include multiple subforms of G proteins and regulatory proteins including RGS proteins, among others. While the GPCR repertoire of Ciona intestinalis, representing the basal chordate is known, the repertoire of the heterotrimeric G proteins and RGS proteins is unknown.

Methodology/Principal Findings

In the present study, we performed an in-silico genome-wide search of C. intestinalis for its complement of G proteins and RGS proteins. The identification of several one-to-one orthologs of human G proteins at the levels of families, subfamilies and types and of homologs of the human RGS proteins suggests an evolutionarily conserved structure function relationship of the GPCR signaling mechanism in the chordates.

Conclusions

The C. intestinalis genome encodes a highly conserved, albeit, limited repertoire of the heterotrimeric G protein complexes with the size of subunit types comparable with that in lower eukaryotes.  相似文献   

15.
β-arrestin是一类重要的信号调控蛋白和支架蛋白(scaffold)。在G蛋白偶联受体(G-protein-OOU-piedreceptor,GPCR)信号转导中,β-arrestin不但可以作为GPCR信号的负性调控分子,还能作为支架蛋白促进GPCR对其他信号通路的激活,如有丝分裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)途径。另外β-arrestin还能与转录因子调节蛋白,如IKB和Mdm2相互作用问接调节NF-κB和P53介导的转录。  相似文献   

16.
Fusion proteins between heptahelical receptors (GPCR) and G protein alpha-subunits show enhanced signaling efficiency in transfected cells. This is believed to be the result of molecular proximity, because the interaction between linked modules of one protein chain, if not constrained by structure, should be strongly favored compared with the same in which partners react as free species. To test this assumption we made a series of fusion proteins (type 1 and 4 opioid receptors with G(o) and beta(2) adrenergic and dopamine 1 receptors with G(sL)) and some mutated analogs carrying different tags and defective GPCR or Galpha subunits. Using cotransfection experiments with readout protocols able to distinguish activation at fused and non-fused alpha-subunits, we found that both the GPCR and the Galpha limb of one fusion protein can freely interact with non-fused proteins and the tethered partners of a neighboring fusion complex. Moreover, a bulky polyanionic inhibitor can suppress with identical potency receptor-Galpha interaction, either when occurring between latched domains of a fused system or separate elements of distinct molecules, indicating that the binding surfaces are equally accessible in both cases. These data demonstrate that there is no entropy drive from the linked condition of fusion proteins and suggest that their signaling may result from the GPCR of one complex interacting with the alpha-subunit of another. Moreover, the enhanced coupling efficiency commonly observed for fusion proteins is not due to the receptor tether, but to the transmembrane helix that anchors Galpha to the membrane.  相似文献   

17.
The discovery that class C G protein-coupled receptors (GPCRs) function as obligatory dimeric entities has generated major interest in GPCR oligomerization. Oligomerization now appears to be a common feature among all GPCR classes. However, the functional significance of this process remains unclear because, in vitro, some monomeric GPCRs, such as rhodopsin and β(2)-adrenergic receptors, activate G proteins. By using wild type and mutant serotonin type 4 receptors (5-HT(4)Rs) (including a 5-HT(4)-RASSL) expressed in COS-7 cells as models of class A GPCRs, we show that activation of one protomer in a dimer was sufficient to stimulate G proteins. However, coupling efficiency was 2 times higher when both protomers were activated. Expression of combinations of 5-HT(4), in which both protomers were able to bind to agonists but only one could couple to G proteins, suggested that upon agonist occupancy, protomers did not independently couple to G proteins but rather that only one G protein was activated. Coupling of a single heterotrimeric G(s) protein to a receptor dimer was further confirmed in vitro, using the purified recombinant WT RASSL 5-HT(4)R obligatory heterodimer. These results, together with previous findings, demonstrate that, differently from class C GPCR dimers, class A GPCR dimers have pleiotropic activation mechanisms.  相似文献   

18.
Based on indications of direct physical interactions between neuropeptide and monoamine receptors in the early 1980s, the term receptor–receptor interactions was introduced and later on the term receptor heteromerization in the early 1990s. Allosteric mechanisms allow an integrative activity to emerge either intramolecularly in G protein-coupled receptor (GPCR) monomers or intermolecularly via receptor–receptor interactions in GPCR homodimers, heterodimers, and receptor mosaics. Stable heteromers of Class A receptors may be formed that involve strong high energy arginine–phosphate electrostatic interactions. These receptor–receptor interactions markedly increase the repertoire of GPCR recognition, signaling and trafficking in which the minimal signaling unit in the GPCR homomers appears to be one receptor and one G protein. GPCR homomers and GPCR assemblies are not isolated but also directly interact with other proteins to form horizontal molecular networks at the plasma membrane.  相似文献   

19.
As the most diverse type of cell surface receptor, the importance heptahelical G protein-coupled receptors (GPCRs) to clinical medicine cannot be overestimated. Visual, olfactory and gustatory sensation, intermediary metabolism, cell growth and differentiation are all influenced by GPCR signals. The basic receptor-G protein-effector mechanism of GPCR signaling is tuned by a complex interplay of positive and negative regulatory events that amplify the effect of a hormone binding the receptor or that dampen cellular responsiveness. The association of heptahelical receptors with a variety of intracellular partners other than G proteins has led to the discovery of potential mechanisms of GPCR signaling that extend beyond the classical paradigms. While the physiologic relevance of many of these novel mechanisms of GPCR signaling remains to be established, their existence suggests that the mechanisms of GPCR signaling are even more diverse than previously imagined.  相似文献   

20.
β-Arrestins are multifunctional adaptor proteins best know for their vital role in regulating G protein coupled receptor (GPCR) trafficking and signaling. β-arrestin2 recruitment and receptor internalization of corticotropin-releasing factor receptor 1 (CRFR1), a GPCR whose antagonists have been shown to demonstrate both anxiolytic- and antidepressant-like effects, have previously been shown to be modulated by PDZ proteins. Thus, a structural characterization of the interaction between β-arrestins and PDZ proteins can delineate potential mechanism of PDZ-dependent regulation of GPCR trafficking. Here, we find that the PDZ proteins PSD-95, MAGI1, and PDZK1 interact with β-arrestin2 in a PDZ domain-dependent manner. Further investigation of such interaction using mutational analyses revealed that mutating the alanine residue at 175 residue of β-arrestin2 to phenylalanine impairs interaction with PSD-95. Additionally, A175F mutant of β-arrestin2 shows decreased CRF-stimulated recruitment to CRFR1 and reduced receptor internalization. Thus, our findings show that the interaction between β-arrestins and PDZ proteins is key for CRFR1 trafficking and may be targeted to mitigate impaired CRFR1 signaling in mental and psychiatric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号