首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
DNA supercoiling and suppression of the leu-500 promoter mutation.   总被引:12,自引:4,他引:8       下载免费PDF全文
top mutations (formerly supX) eliminate DNA topoisomerase I activity and suppress the leu-500 promoter mutation in Salmonella typhimurium (K. M. Overbye, S. K. Basu, and P. Margolin, Cold Spring Harbor Symp. Quant. Biol. 47:785-791, 1983). Sublethal doses of coumermycin which reduce intracellular levels of supercoiling activity in a top mutant eliminated suppression of the leu-500 mutation. This result provides evidence that increased DNA supercoiling suppresses the leu-500 promoter mutation in top mutants.  相似文献   

5.
A Promoter Relay Mechanism for Sequential Gene Activation   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

6.
7.
8.
In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown ceils, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S.meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoiling-dependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Although Escherichia coli and Salmonella enterica inhabit similar niches and employ similar genetic regulatory programmes, we find that they differ significantly in their DNA supercoiling responses to environmental and antibiotic challenges. Whereas E. coli demonstrates large dynamic transitions in supercoiling in response to growth phase, osmotic pressure and novobiocin treatment, supercoiling levels are much less variable in S. enterica. The FIS protein is a global regulator of supercoiling in E. coli, but it was found to have less influence over supercoiling control in S. enterica. These inter-species differences fine-tune gene promoters to endogenous supercoiling and FIS levels. Transferring a Salmonella virulence gene promoter (P(ssrA) ) into a new enteric host (E. coli) caused aberrant expression in response to stimulatory signals. Reciprocal horizontal transfer of topA promoters, which control expression of topoisomerase I, between E. coli and S. enterica revealed how these orthologous promoters have evolved to respond differentially to FIS and supercoiling levels in their cognate species. This also identified a previously unrecognized osmoregulation of topA expression that is independent of FIS and supercoiling in both E. coli and S. enterica. These findings suggest that E. coli and S. enterica may be unexpectedly divergent in their global regulation of cellular physiology.  相似文献   

17.
18.
19.
Efficient repression of the two promoters P1 and P2 of the gal operon requires the formation of a DNA loop encompassing the promoters. In vitro, DNA looping-mediated repression involves binding of the Gal repressor (GalR) to two gal operators (OE and OI) and binding of the histone-like protein HU to a specific locus (hbs) about the midpoint between OE and OI, and supercoiled DNA. Without DNA looping, GalR binding to OE partially represses P1 and stimulates P2. We investigated the requirement for DNA supercoiling and HU in repression of the gal promoters in vivo in strains containing a fusion of a reporter gene, gusA or lacZ, to each promoter individually. While the P1 promoter was found to be repressible in the absence of DNA supercoiling and HU, the repression of P2 was entirely dependent upon DNA supercoiling in vivo. The P2 promoter was fully derepressed when supercoiling was inhibited by the addition of coumermycin in cells. P2, but not P1, was also totally derepressed by the absence of HU or the OI operator. From these results, we propose that the repression of the gal promoters in vivo is mediated by the formation of a higher order DNA-multiprotein complex containing GalR, HU and supercoiled DNA. In the absence of this complex, P1 but not P2 is still repressed by GalR binding to OE. The specific nucleoprotein complexes involving histone-like proteins, which repress promoter activity while remaining sensitive to inducing signals, as discussed, may occur more generally in bacterial nucleoids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号