共查询到20条相似文献,搜索用时 0 毫秒
1.
Eyvind J. Paulssen Ruth H. Paulssen Kaare M. Gautvik Jan O. Gordeladze 《Cellular signalling》1992,4(6):747-755
We have investigated the possibility that adenylyl cyclase (AC) activity and membrane protein levels of the -subunits of the stimulatory and inhibitory G-proteins of AC (Gs and Gi−2) in cultured prolactin-producing rat pituitary adenoma cells (GH3 cells) are modulated by phospholipase C (PLC)-generated second messengers. Pretreatment of cells (6–48 h) with ionomycin (1 μM) or 1-oleoyl-2-acetylglycerol (OAG; 1μM) showed that ionomycin regulated Gs levels in a time-dependent, biphasic manner; a two-fold increase followed a 40% initial reduction, while OAG lowered Gs levels by more than 50% at all time-points. Gi−2 levels remained unchanged by both pretreatments. OAG, but not ionomycin, increased basal AC activity without increasing enzyme protein levels. Alterations in AC responsiveness to peptide hormones (e.g. thyroliberin and vasoactive intestinal peptide) correlated to membrane Gs protein -subunit content. These results demonstrate the involvement of G-protein translation regulation as one mechanism of ‘cross-talk’ between the PLC- and AC-dependent signalling pathways. 相似文献
2.
Yukiko Yajima Toshikazu Saito 《In vitro cellular & developmental biology. Plant》1982,18(12):1009-1016
Summary Chronic treatment (more than 3 d) of GH3 cells, cloned rat pituitary cells producing prolactin, with 100 nM TRH resulted in a 41% reduction in the rate of cell growth in a medium containing 0.5% fetal bovine serum. These effects
of TRH appeared both in the medium containing a higher concentration of serum and in that containing six growth factors, i.e.
insulin, transferrin, parathyroid hormone, fibroblast growth factor, triiodothyronine, and multiplication-stimulating activity
(MSA) instead of serum. TRH stimulated prolactin production by GH3 cells in a dose-dependent manner both in the serum-supplemented and serum-free media. On the other hand, TRH, at 1 nM, elicited a 130% stimulation in the cellular growth, whereas, at concentrations of more than 10 nM, it inhibited the growth significantly.
In the defined culture system, it was demonstrated that TRH stimulated prolactin production in the presence or absence of
six growth factors, whereas its inhibitory effects on cellular growth appeared only in the presence of MSA regardless of the
presence or absence of the other five factors. Furthermore, it was shown that a dose-dependent stimulatory effect of MSA on
the growth of GH3 cells was suppressed by TRH. TRH exhibited only a stimulatory effect on cellular growth in the medium containing the five
factors other than MSA. In conclusion, TRH could inhibit cell growth of GH3 in the presence of MSA in the defined medium or MSA-like factor(s) in the serum-supplemented medium. 相似文献
3.
Summary Unique rod-shaped secretory granules were observed among oval or spherical secretory granules in GH cells of the anterior pituitary gland of musk shrew using the protein A-gold procedure combined with electron microscopy. The rod-shaped and spherical secretory granules were both immunoreactive by the immuno-gold method using antiserum to sheep GH. The rod-shaped secretory granules, which seem to be formed directly from the Golgi vesicles, extend from several hundred to several thousand nm in length. They often touch each other and fuse. The spherical secretory granules are also unique in that they may also fuse with loss of dense contents to leave empty circular membrane profiles in the cytoplasm. Both the rodshaped and spherical secretory granules are secreted from the cell by exocytosis. 相似文献
4.
Summary The hybrid GH cell strain, 928-9b, isolated from PRL+ (prolactin [PRL] producing) GH4Cl and PRL (PRL non-producing) FIBGH12CI cells, has specific TRH (thyroliberin) receptors, yet does not respond to this peptide hormone. Unlike the parent strain, GH4Cl, TRH does not stimulate synthesis or release of PRL in the hybrid strain. In contrast, treatment of 928-9b cells with another peptide, EGF (epidermal growth factor), stimulates both release and synthesis of PRL. The number of EGF receptors in the hybrid strain (2.5 × 103/cell) and the affinity of these receptors for ligand (2.2 nM) are comparable to that of the parent strain, GH4C1. The EGF dose response curve is also essentially the same for parent and hybrid cells for the enhancement of PRL production. A 3-8-fold enhancement of PRL production is observed and 1/2 maximal enhancement occurs at approximately 5 × 1011 M EGF for both strains. TRH does not have any potentiating effect on EGF-induced stimulation of PRL release or PRL synthesis in the hybrid strain. Although EGF and TRH have similar biological effects in responsive GH cells, binding of one hormone to its receptors does not modulate the binding of the heterologous hormone. These findings demonstrate that more than one effect of TRH is defective in 928-9b cells even though EGF responses are intact. This suggests that 1) TRH-stimulated PRL release and TRH-stimulated PRL production have a common intermediate step, and 2) TRH and EGF have a different mechanism of action in GH cells. 相似文献
5.
Truls Myrmel Terje S. Larsen Andreas Skulberg Kirsti Forsdahl Clive Little 《Molecular and cellular biochemistry》1989,88(1-2):107-111
Summary Preincubation of rat myocardial cells in hypoxic substrate-free Krebs-Ringer bicarbonate buffer (pH 7.4, 37°C) resulted in a substantial decline in high energy phosphates (ATP and CP). Thus, 20 and 60 min preincubation produced a 18 and 72% decline in ATP content, whereas the parallel decline in CP content was 51 and 73%. This energy depletion was accompanied by a change in cell morphology from the initial rod-shaped form to rounded up (hyper-contracted) myocytes. In cells preincubated in substrate-free normoxic buffer, both normal morphology and energy homeostasis were maintained. When energy depleted myocytes later were incubated in the presence of phospholipase C (PLC), this resulted in a substantial release of glycerol, amounting to 92 and 137 nmol/106 cells – 2 h in 20 and 60 min energy depleted myocytes, respectively. In addition, PLC caused an increased leakage of lactate dehydrogenase in energy depleted myocytes. Normal cells, on the other hand, were apparently not affected by PLC. These data suggest that PLC selectively attacks energy depleted and/or structurally damaged myocytes. This could well enhance the breakdown of the natural barrier between the extra- and intracellular compartments and thus augment the cellular damage during ischemia. Moreover, energy depleted myocytes appeared exceptionally sensitive to this enzyme, since the levels required to cause glycerol or lactate dehydrogenase release were several orders of magnitude lower than that required to cause membrane permeation in other cell types. 相似文献
6.
Berit M. Mortensen Hanne W. Lund Greg Jablonski Ruth H. Paulssen Jan O. Gordeladze 《Bioscience reports》1995,15(3):135-150
In normal rats treated with 1,25(OH)2D3 or 24,25(OH)2D3, serum Ca2+, ALP, PRL and GH are significantly altered. In order to study the primary effect of vitamin D3 analogues on target organ function, rat UMR 106 osteosarcoma and GH3 pituitary adenoma cells in monolayer culture were exposed accordingly.Surprisingly, prolonged exposure of these cell lines to physiological levels of either 1,25(OH)2D3 or 24,25(OH)2D3 did not significantly affect the secretory parameters (ALP, PRL or GH) tested. However, 1,25(OH)2D3 exposure significantly reduced PTH- and Gpp(NH)p-elicited AC as well as Gpp(NH)p-stimulated PLC activities in the UMR 106 cells. These changes were accompanied by an increase and decrease in the membrane contents of the G-protein subunits G36 and Gq/11, respectively. In contrast, 24,25(OH)2D3 remained without significant biological effect on these signalling systems despite concomitantly augmented levels of G36. TRH- and Gpp(NH)p-elicited PLC activities in the GH3 cells were significantly reduced by 1,25(OH)2D3 with a concurrent reduction in cellular amounts of Gq/11, however, 24,25(OH)2D3 did not significantly alter any signalling systems nor G-proteins analyzed.It is concluded that the osteoblastic and pituitary cell secretion of ALP, PRL and GH remain unaffected by the presence of 1,25(OH)2D3 and 24,25(OH)2D3, despite distinct alterations in components of G-protein mediated signalling pathways. Hence, other factors like ambient Ca2+ may be responsible for the perturbed secretory patterns of ALP and PRL seen in vitamin D3 treated rats.Abbreviations AC
adenylate cyclase
- ALP
alkaline phosphatase
- BGP
osteocalcin
- BSA
bovine serum albumin
- DA
dopamine
- DAG
diacylglycerol
- GH
growth hormone
- GHRH
growth hormone releasing hormone
- Gpp(NH)p
guanosine 5-[-imido]triphosphate
- G-protein
guanine nucleotide-binding regulatory protein
- Gs etc.
Gs protein -subunit
- IP3
inositol 1,4,5 trisphosphate
- OAF
osteoclast activating factor
- PGE2
prostaglandin E2
- PKA & PKC
protein kinase A & C
- PLC
phospholipase C
- PRL
prolactin
- PTH
parathyroid hormone
- SRIF
somatostatin
- TRH
thyrotropin releasing hormone
- VIP
vasoactive intestinal peptide
- 25(OH)D3
25 hydroxy vitamin D3
- 1,25(OH)2D3
1·25 dihydroxy vitamin D3
- 24,25(OH)2D3
24,25 dihydroxy vitamin D3 相似文献
7.
Hormone-sensitive adenylate cyclase of prolactin-producing rat pituitary adenoma (GH4C1) cells: molecular organization 总被引:1,自引:0,他引:1
J O Gordeladze K Sletholt N A Thorn K M Gautvik 《European journal of biochemistry》1988,177(3):665-672
Hormonal activation and inhibition of the GH4Cl1 cell adenylate cyclase complex is delineated. In the presence of the guanyl nucleotide GTP, enzyme activity was enhanced twofold by thyroliberin, sixfold by vasoactive intestinal peptide (VIP), twofold by prostaglandin E2 and twofold by isoproterenol. The diterpene, forskolin, increased, the activity 14-fold. In the presence of high GTP (400 microM) and NaCl (150 mM) concentrations, somatostatin inhibited (ED50 = 0.5 microM) the cyclase activity by 40%. In the presence of 10 microM somatostatin, the ED50 values (5 nM) for thyroliberin- and VIP-stimulated adenylate cyclase activities were shifted to 20 nM. Forskolin-elicited activation was, however, not affected by somatostatin. Cholera-toxin and pertussis-toxin pretreatment of the enzyme brought about some 20-fold and twofold activation, respectively. Inhibition by somatostatin was abolished upon pre-exposure to pertussis toxin. Mild alkylation by N-ethylmaleimide increased basal and hormone-activated adenylate cyclase while somatostatin again failed to express its inhibitory potential. Further alkylation caused a gradual decline and convergence of hormone-modulated cyclase activities towards zero. The N-ethylmaleimide-induced attenuation of thyroliberin-elicited activity was paralleled by a decrease in [3H]thyroliberin binding. Trifluoperazine and an anti-calmodulin serum reduced basal and net thyroliberin-, VIP- and forskolin-enhanced cyclase activities by some 30%, 100%, 70% and 80%, respectively. The Vmax of basal and thyroliberin-stimulated adenylate cyclase was diminished by 65%, leaving the apparent Km values (7.2 mM and 2.6 mM, respectively) for Mg2+ unaltered. Finally, the phorbol ester 12-O-tetra-decanoyl-phorbol 13-acetate (TPA) doubled the activity. This effect was counteracted by the protein kinase C inhibitor, polymyxin B, while thyroliberin-enhanced adenylate cyclase remained unaffected. In summary, we have described an adenylate cyclase with stimulatory (Rs) and inhibitory (Ri) receptors coupled to a calmodulin-sensitive holoenzyme through the Gs and Gi type of GTP-binding proteins. The ratio of the Gs to Gi is high. It appears that the GH4C1 cell adenylate cyclase is also activated by protein kinase C by interference with Gi. Apparently, thyroliberin activates the cyclase both directly through Gs and indirectly via protein kinase C stimulation. 相似文献
8.
9.
R. Ravindra S.P. Kunapuli L.J. Forman R.G. Nagele K.A. Foster S.A. Patel 《Journal of cellular biochemistry》1996,61(3):392-401
In order to study Gq-tubulin interaction in the cytosol, GH3 and AtT-20 cells (stably expressing TRH receptor) were transiently transfected with Gqα cDNA. Forty-eight hours after transfection, thyrotropin-releasing hormone (TRH)-stimulated prolactin (PRL) secretion by Gqα-transfected GH3 cells increased by 90% compared to mock-transfected cells. In addition, using immunocytochemistry it was observed that Gqα-specific staining was much more prominent in Gqα-transfected GH3 and AtT-20 cells (also transfected with Gqα) compared to mock-transfected cells. Thus, transfection resulted in successful overexpression of functional Gqα. Forty-eight hours after transfection, cells were processed to obtain soluble and polymerized tubulin fractions. Tubulin levels were determined in these fractions by immunoblotting using polyclonal anti-tubulin antibodies. Compared to mock-transfected cells soluble tubulin levels decreased in Gqα-transfected GH1 and AtT-20 cells, by 33 and 52%, respectively. Moreover, compared to mock-transfected cells a 50% reduction in the ratio (an index of the flux between tubulin pools) of soluble and polymerized tubulin levels was observed in Gqα-transfected GH3 and AtT-20 cells. To determine whether these effects on tubulin were mediated by Gq directly, we examined the influence of purified Gq on tubulin polymerization. Gq (0.5 μM) inhibited polymerization of crude tubulin (present in GH3 cell cytosol) by 53%. In contrast to its effects on GH3 cell cytosol tubulin, Gq stimulated purified tubulin polymerization by 160%. These results suggest that Gq modulates the polymerization and depolymerization cycles of tubulin and that this modulation is in turn influenced by other unknown cellular components. © 1996 Wiley-Liss, Inc. 相似文献
10.
The hypothesis that protein kinase C (PKC) participates in agonist-mediated desensitization of formyl peptide receptors in HL-60 granulocytes was tested. fMet-Leu-Phe and leukotriene B4(LTB4) produced homologous desensitization of agonist-stimulated intracellular calcium transients. Pre-treatment with the PKC activator, phorbol myristate acetate (PMA; 10 nM), abolished both fMet-Leu-Phe and LTB4-stimulated calcium transients. Membranes prepared from control HL-60 granulocytes (NM) or cells treated with 10 nM PMA (PMA-M) demonstrated increased formyl peptide receptor and G protein density, as determined by radioligand binding and pertussis toxin- and cholera toxin-catalysed ADP ribosylation. fMet-Leu-Phe stimulation of guanosine 5′-[γ-thio]-triphosphate (GTPγS) binding and GTP hydrolysis and GDP inhibition of fMet-Leu-Phe binding were not different between NM and PMA-M. Pre-treatment with 10 nM PMA did not inhibit subsequent fMet-Leu-Phe-stimulated superoxide generation or phospholidase D activation. We conclude that PKC desensitizes fMet-Leu-Phe-stimulated phospholipase C, but not phospholipase D, responses and that PKC activation does not mediate agonist-induced desensitization of formyl peptide receptors. 相似文献
11.
T Bj?ro P A Torjesen B C Ostberg O Sand J G Iversen K M Gautvik E Haug 《Regulatory peptides》1987,19(3-4):169-182
Bombesin (BBS) stimulated prolactin (PRL) secretion from monolayer cultures of rat pituitary tumour cells (GH4C1) in a dose-dependent manner with half maximal and maximal effect at 2 nM and 100 nM, respectively. No additional stimulatory effect on PRL secretion was seen when BBS was combined with thyroliberin (TRH) used in concentrations known to give maximal effects, while the effects of BBS and vasoactive intestinal peptide (VIP) were additive. Using a parafusion system, BBS (1 microM) was found to increase PRL secretion within 4 s and the secretion profiles elicited by BBS and TRH (1 microM) were similar. Both BBS and TRH increased inositoltrisphosphate (IP3) as well as inositolbisphosphate (IP2) formation within 2 s. BBS also induced the same biphasic changes in the electrical membrane properties of GH4C1 cells as TRH, and both peptides caused a rapid and sustained increase in intracellular [Ca2+]. These results suggest that BBS stimulates PRL secretion from the GH4C1 cells via a mechanism involving the immediate formation of IP3 thus resembling the action of TRH. 相似文献
12.
Eyvind J. Paulssen Ruth H. Paulssen Kaare M. Gautvik Jan O. Gordeladze 《Cellular signalling》1992,4(6)
We have investigated the possibility that adenylyl cyclase (AC) activity and membrane protein levels of the α-subunits of the stimulatory and inhibitory G-proteins of AC (Gsα and Gi−2α) in cultured prolactin-producing rat pituitary adenoma cells (GH3 cells) are modulated by phospholipase C (PLC)-generated second messengers. Pretreatment of cells (6–48 h) with ionomycin (1 μM) or 1-oleoyl-2-acetylglycerol (OAG; 1μM) showed that ionomycin regulated Gsα levels in a time-dependent, biphasic manner; a two-fold increase followed a 40% initial reduction, while OAG lowered Gsα levels by more than 50% at all time-points. Gi−2α levels remained unchanged by both pretreatments. OAG, but not ionomycin, increased basal AC activity without increasing enzyme protein levels. Alterations in AC responsiveness to peptide hormones (e.g. thyroliberin and vasoactive intestinal peptide) correlated to membrane Gs protein α-subunit content. These results demonstrate the involvement of G-protein translation regulation as one mechanism of ‘cross-talk’ between the PLC- and AC-dependent signalling pathways. 相似文献
13.
Secondo A De Mizio M Zirpoli L Santillo M Mondola P 《Biochemical and biophysical research communications》2008,376(1):143-147
The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation.These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor. 相似文献
14.
The role of phosphoinositide-specific phospholipase C (PI-PLC) signaling in the macrotubule-dependent protoplast volume regulation in plasmolyzed root cells of Triticum turgidum was investigated. At the onset of hyperosmotic stress, PI-PLC activation was documented. Inhibition of PI-PLC activity by U73122 blocked tubulin macrotubule formation in plasmolyzed cells and their protoplast volume regulatory mechanism. In neomycin-treated plasmolyzed cells, macrotubule formation and protoplast volume regulation were not affected. In these cells the PI-PLC pathway is down-regulated as neomycin sequesters the PI-PLC substrate, 4,5-diphosphate-phosphatidyl inositol (PtdInsP(2)). These phenomena were unaffected by R59022, an inhibitor of phosphatidic acic (PA) production via the PLC pathway. Taxol, a microtubule (MT) stabilizer, inhibited the hyperosmotic activation of PI-PLC, but oryzalin, which disorganized MTs, triggered PI-PLC activity. Taxol prevented macrotubule formation and inhibited the mechanism regulating the volume of the plasmolyzed protoplast. Neomycin partly relieved some of the taxol effects. These data suggest that PtdInspP(2) turnover via PI-PLC assists macrotubule formation and activation of the mechanism regulating the plasmolyzed protoplast volume; and the massive disorganization of MTs that is carried out at the onset of hyperosmotic treatment triggers the activation of this mechanism. 相似文献
15.
David A. Sirbasku Rajbabu Pakala Hidetaka Sato John E. Eby 《In vitro cellular & developmental biology. Animal》1992,28(1):67-71
Summary Growth hormone (GH) production by GH1 rat pituitary tumor cells in iron restricted serum-free defined medium requires apotransferrin (apoTf) and triiodothyronine
(T3). As measured by radioimmunoassay, apoTf plus T3 induced GH levels 2 to 4-fold above controls. Deletion of either apoTf or T3 arrested GH secretion. ApoTf/T3 defined medium regulated GH production as effectively as whole serum. Because glucocorticoids enhance GH secretion in serum
containing cultures, the effects of dexamethasone were evaluated in apoTf/T3 defined medium. The steroid hormone showed no enhancing effects unless the cells were exposed to serum prior to incubation
in apoTf/T3 defined medium. Even under these conditions, the response to dexamethasone remained T3 dependent. These observations indicate that a yet to be characterized serum factor(s), other than apoTf, regulates the reponse
to the steroid hormone. This is the first report of thyroid hormone regulation of GH secretion by rat pituitary tumor cells
under completely serum-free chemically defined conditions. 相似文献
16.
Jan O. Gordeladze 《Bioscience reports》1990,10(4):375-388
Rolipram (4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone) represents a new class of specific low Km cAMP phosphodiesterase (PDE) inhibitors. This compound enhances basal, hormone- and forskolin-elicited cAMP accumulation in prolactin (PRL) producing rat pituitary adenoma (GH4C1) cells in culture (ED50=5·10–8 M). This effect is due to a selective inhibition of the low Km cAMP PDE (type III), since neither basal nor hormone-stimulated adenylate cyclase (AC) nor the Ca2+/calmodulin-dependent PDE were affected by rolipram. The drug enhanced vasoactive intestinal polypeptide (VIP)-stimulated PRL-secretion, while thyroliberin (TRH)- and 12-0-tetradecanoyl phorbol-13-acetate (TPA)-elicited PRL egress were slightly reduced indicating a cAMP-mediated reduction of protein kinase C (PK-C) mediated PRL release. Interestingly, inhibition of PRL secretion by somatostatin (SRIH) was completely suppressed suggesting cAMP-mediated inactivation of some GTP-binding protein(s) of the
i family (G
i2 orG
k). Rolipram did not affect phosphoinositide metabolism (i.e. IP3 accumulation), neither acutely nor after long term administration. Rolipram, like the cAMP PDE inhibitor Ro 20–1724, did not influence AC and PDE I, but dose-dependently inhibited PDE III activity.Long term incubation of GH4C1 cells with rolipram in the presence of noradrenaline (NA) exerted a marginal decrease of -receptor number, AC activation and cAMP accumulation, while Ro 20–1724 brought about a marked down-regulation and desensitization of the AC complex.In summary, rolipram selectively interacts with PDE III in rat pituitary adenoma cells in culture and does not result in -adrenoceptor AC downregulation. These features are not shared by the other drugs tested. 相似文献
17.
Jerzy B. Warchol Damon C. Herbert Dr. Edward G. Rennels 《Cell and tissue research》1974,155(2):193-199
Summary Prolactin cells from anterior pituitary glands of normal non-lactating female rats, and lactating animals, some of which were separated from their pups for 48 hours, were examined ultrastructurally for the presence of microfilaments. Microfilaments were found in specific intracellular locations in all cells examined. They were in association with the nuclear envelope, the Golgi complex, the endoplasmic reticulum, small vesicles of the endoplasmic reticulum, and secretory granules. The possible role of microfilaments in the movement of intracellular organelles is considered.This investigation was supported by the National Institutes of Health grants AM 12583 and TW 02023.The authors wish to express their gratitude to Mr. M. G. Williams and Miss Pauline Cisneros for their excellent technical assistance. 相似文献
18.
The effects of the natural polyamines, putrescine, spermidine and spermine on single calcium-activated potassium channels from clonal rat pituitary tumor cells (GH3) were studied. Applied to inside-out patches, polyamines were found to reduce the current amplitude and open probability of the channels in a dose- and voltage-dependent manner, indicating that polyamines act as fast blockers which sense a fraction of the electrical field in the channel pore. The K
d
for spermine was 11.2 mm for the reduction of unitary current amplitude and 0.7 mm for the reduction of the open probability. The order of effectiveness was spermine > spermidine > putrescine. From fitting -functions to current amplitude histograms, blocking and unblocking rates were determined as 11.4 × 104 sec–1 and 21.9 × 104 sec–1, respectively. The reduction of the channel open probability was relieved by an increase of the Ca2+ concentration of the internal solution, indicating that polyamines compete with Ca2+ at the Ca2+ sensor of the channel. Putrescine antagonized the effect of spermine on the channel current amplitude. The results suggest that polyamines at intracellular millimolar concentrations suppress ion channel activity and therefore may effect electrical discharge behavior of excitable cells.This work was supported in part by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, P8587. 相似文献
19.
Barbara A. Brennessel Kathleen J. Keyes 《In vitro cellular & developmental biology. Plant》1985,21(7):402-408
Summary The artificial sweetener saccharin inhibits binding of epidermal growth factor (EGF) to cultured rat pituitary tumor cells
(GH4C1 cells). Saccharin also causes morphological alterations in these cells, resulting in pronounced elongation, stretching, and
firmer attachment of cells to the culture dishes. These alterations in cell shape are similar to those observed after treatment
of GH4C1 cells with EGF and with thyrotropin-releasing hormone (TRH), both of which enhance prolactin (PRL) production in these cells.
After assaying for PRL in saccharin-treated cultures, it was observed that this sweetener is also capable of stimulating PRL
production two-to sixfold in a dose-dependent manner. Enhancement of PRL production can be observed at 0.5 mM saccharin, yet this is 10 times less than the saccharin concentration required to alter cell shape. These effects of saccharin
on cell morphology and on PRL production are reversible in GH4C1 cell cultures. When added to cultures along with maximal concentrations of EGF or TRH, the effects of saccharin on PRL production
are additive, suggesting that the actions of saccharin are mediated by a somewhat different pathway from that of the peptide
hormones. Pulse labeling studies indicate that the enhancement of PRL production is highly specific inasmuch as saccharin
was found to decrease the overall rate of protein synthesis in these cells. Saccharin also causes a decrease in the rate of
DNA synthesis under these treatment conditions. Mitomycin C, which similarly inhibited DNA synthesis, had no effect on cell
morphology or PRL production.
This investigation was supported by a Faculty Research Grant from Wheaton College 相似文献
20.
Santillo M Secondo A Serù R Damiano S Garbi C Taverna E Rosa P Giovedì S Benfenati F Mondola P 《Journal of neurochemistry》2007,102(3):679-685
The antioxidant enzyme CuZn superoxide dismutase (SOD1) is secreted by many cell lines. However, it is not clear whether SOD1 secretion is only constitutive or can be regulated in an activity-dependent fashion. Using rat pituitary GH(3) cells that express voltage-dependent calcium channels and are subjected to Ca(2+) oscillations, we found that treatment with high K(+)-induced SOD1 release that was significantly higher than the constitutive secretion. Evoked SOD1 release was correlated with depolarization-dependent calcium influx and was virtually abolished by removal of extracellular calcium with EGTA or by pre-incubation of GH(3) cells with Botulinum toxin A that cleaves the SNARE protein SNAP-25. Immunofluorescence experiments performed in GH(3) cells and rat brain synaptosomes showed that K(+)-depolarization induced a marked depletion of intracellular SOD1 immunoreactivity, an effect that was again abolished in the absence of extracellular calcium or after treatment with Botulinum toxin A. Subcellular fractionation analysis showed that SOD1 was present in large dense core vesicles. These data clearly show that, in addition to the constitutive SOD1 secretion, depolarization induces an additional rapid calcium-dependent SOD1 release in GH(3) cells and in rat brain synaptosomes. This likely occurs through exocytosis from SOD1-containing vesicles operated by the SNARE complex. 相似文献