首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Cole JL  Garsky VM 《Biochemistry》2001,40(19):5633-5641
The gp41 subunit of the human immunodeficiency virus type 1 envelope glycoprotein mediates fusion of the cellular and viral membranes. The gp41 ectodomain is a trimer of alpha-helical hairpins, where N-terminal helices form a parallel three-stranded coiled-coil core and C-terminal helices pack around the core. A deep hydrophobic pocket on the N-terminal core represents an attractive target for antiviral therapeutics. We have employed a soluble derivative of the gp41 core ectodomain and small cyclic disulfide D-peptide inhibitors to define the stoichiometry, affinity, and thermodynamics of ligand binding to this pocket using isothermal titration calorimetry. These inhibitors bind with micromolar affinity to the pocket with the expected stoichiometry of three peptides per gp41 core trimer. There are no cooperative interactions among the three binding sites. Linear eight- or nine-residue D-peptides derived from the pocket-binding domain of the cyclic molecules also bind specifically. A negative heat capacity change is observed and is consistent with burial of hydrophobic surface upon binding. Contrary to expectations for a reaction dominated by the classical hydrophobic effect, peptide binding is enthalpically driven and is opposed by an unfavorable negative entropy change. The calorimetry data support models whereby dominant negative inhibitors bind to a transiently exposed surface on the prefusion intermediate state of gp41 and disrupt subsequent resolution to the fusion-active six-stranded hairpin conformation.  相似文献   

5.
Tau protein plays a role in the extension and maintenance of neuronal processes through a direct association with microtubules. To characterize the nature of this association, we have synthesized a collection of tau protein fragments and studied their binding properties. The relatively weak affinity of tau protein for microtubules (approximately 10(-7) M) is concentrated in a large region containing three or four 18 amino acid repeated binding elements. These are separated by apparently flexible but less conserved linker sequences of 13-14 amino acids that do not bind. Within the repeats, the binding energy for microtubules is delocalized and derives from a series of weak interactions contributed by small groups of amino acids. These unusual characteristics suggest tau protein can assume multiple conformations and can pivot and perhaps migrate on the surface of the microtubule. The flexible structure of the tau protein binding interaction may allow it to be easily displaced from the microtubule lattice and may have important consequences for its function.  相似文献   

6.
7.
8.
E A Nalefski  A C Newton 《Biochemistry》2001,40(44):13216-13229
Conventional isoforms of protein kinase C (PKC) are activated when their two membrane-targeting modules, the C1 and C2 domains, bind the second messengers diacylglycerol (DG) and Ca2+, respectively. This study investigates the mechanism of Ca2+-induced binding of PKC betaII to anionic membranes mediated by the C2 domain. Stopped-flow fluorescence spectroscopy reveals that Ca2+-induced binding of the isolated C2 domain to anionic vesicles proceeds via at least two steps: (1) rapid binding of two or more Ca2+ ions to the free domain with relatively low affinity and (2) diffusion-controlled association of the Ca2+-occupied domain with vesicles. Ca2+ increases the affinity of the C2 domain for anionic membranes by both decreasing the dissociation rate constant (k(off)) and increasing the association rate constant (k(on)) for membrane binding. For binding to vesicles containing 40 mol % anionic lipid in the presence of 200 microM Ca2+, k(off) and k(on) are 8.9 s(-1) and 1.2 x 10(10) M(-1) x s(-1), respectively. The k(off) value increases to 150 s(-1) when free Ca2+ levels are rapidly reduced, decreasing the average lifetime of the membrane-bound C2 domain (tau = k(off)(-1)) from 110 ms in the presence of Ca2+ to 6.7 ms when Ca2+ is rapidly removed. Experiments addressing the role of electrostatic interactions reveal that they stabilize either the initial C2 domain-membrane encounter complex or the high-affinity membrane-bound complex. Specifically, lowering the phosphatidylserine mole fraction or including MgCl2 in the binding reaction decreases the affinity of the C2 domain for anionic vesicles by both reducing k(on) and increasing k(off) measured in the presence of 200 microM Ca2+. These species do not affect the k(off) value when Ca2+ is rapidly removed. Studies with PKC betaII reveal that Ca2+-induced binding to membranes by the full-length protein proceeds minimally via two kinetically resolvable steps: (1) a rapid bimolecular association of the enzyme with vesicles near the diffusion-controlled limit and, most likely, (2) subsequent conformational changes of the membrane-bound enzyme. As is the case for the C2 domain, k(off) for full-length PKC betaII increases when Ca2+ is rapidly removed, reducing tau from 11 s in the presence of Ca2+ to 48 ms in its absence. Thus, both the C2 domain and the slow conformational change prolong the lifetime of the PKC betaII-membrane ternary complex in the presence of Ca2+, with rapid membrane release triggered by removal of Ca2+. These results provide a molecular basis for cofactor regulation of PKC whereby the C2 domain searches three-dimensional space at the diffusion-controlled limit to target PKC to relatively common anionic phospholipids, whereupon a two-dimensional search is initiated by the C1 domain for the more rare, membrane-partitioned DG.  相似文献   

9.
10.
The activation domain of the yeast Gal4 protein binds specifically to the Gal80 repressor and is also thought to associate with one or more coactivators in the RNA polymerase II holoenzyme and chromatin remodeling machines. This is a specific example of a common situation in biochemistry where a single protein domain can interact with multiple partners. Are these different interactions related chemically? To probe this point, phage display was employed to isolate peptides from a library based solely on their ability to bind Gal80 protein in vitro. Peptide-Gal80 protein association is shown to be highly specific and of moderate affinity. The Gal80 protein-binding peptides compete with the native activation domain for the repressor, suggesting that they bind to the same site. It was then asked if these peptides could function as activation domains in yeast when tethered to a DNA binding domain. Indeed, this is the case. Furthermore, one of the Gal80-binding peptides binds directly to a domain of the Gal11 protein, a known coactivator. The fact that Gal80-binding peptides are functional activation domains argues that repressor binding and activation/coactivator binding are intimately related properties. This peptide library-based approach should be generally useful for probing the chemical relationship of different binding interactions or functions of a given native domain.  相似文献   

11.
Class I WW domains are present in many proteins of various functions and mediate protein interactions by binding to short linear PPxY motifs. Tandem WW domains often bind peptides with multiple PPxY motifs, but the interplay of WW–peptide interactions is not always intuitive. The WW domain–containing oxidoreductase (WWOX) harbors two WW domains: an unstable WW1 capable of PPxY binding and stable WW2 that cannot bind PPxY. The WW2 domain has been suggested to act as a WW1 domain chaperone, but the underlying mechanism of its chaperone activity remains to be revealed. Here, we combined NMR, isothermal calorimetry, and structural modeling to elucidate the roles of both WW domains in WWOX binding to its PPxY-containing substrate ErbB4. Using NMR, we identified an interaction surface between these two domains that supports a WWOX conformation compatible with peptide substrate binding. Isothermal calorimetry and NMR measurements also indicated that while binding affinity to a single PPxY motif is marginally increased in the presence of WW2, affinity to a dual-motif peptide increases 10-fold. Furthermore, we found WW2 can directly bind double-motif peptides using its canonical binding site. Finally, differential binding of peptides in mutagenesis experiments was consistent with a parallel N- to C-terminal PPxY tandem motif orientation in binding to the WW1–WW2 tandem domain, validating structural models of the interaction. Taken together, our results reveal the complex nature of tandem WW-domain organization and substrate binding, highlighting the contribution of WWOX WW2 to both protein stability and target binding.  相似文献   

12.
13.
PDZ domains are protein adapter modules present in a few hundred human proteins. They play important roles in scaffolding and signal transduction. PDZ domains usually bind to the C termini of their target proteins. To assess the binding mechanism of this interaction we have performed the first in-solution kinetic study for PDZ domains and peptides corresponding to target ligands. Both PDZ3 from postsynaptic density protein 95 and PDZ2 from protein tyrosine phosphatase L1 bind their respective target peptides through an apparent A + B --> A.B mechanism without rate-limiting conformational changes. But a mutant with a fluorescent probe (Trp) outside of the binding pocket suggests that slight changes in the structure take place upon binding in protein tyrosine phosphatase-L1 PDZ2. For PDZ3 from postsynaptic density protein 95 the pH dependence of the binding reaction is consistent with a one-step mechanism with one titratable group. The salt dependence of the interaction shows that the formation of electrostatic interactions is rate-limiting for the association reaction but not for dissociation of the complex.  相似文献   

14.
Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bind specifically to nicked DNA over intact duplex DNA. One of these modules comprises the zinc finger domain and DNA-binding domain, which function together as a single DNA binding unit. The catalytic core of ligase III is the second DNA nick-binding module. Both binding modules are required for ligation of blunt ended DNA substrates. Although the zinc finger increases the catalytic efficiency of nick ligation, it appears to occupy the same binding site as the DNA ligase III catalytic core. We present a jackknife model for ligase III that posits conformational changes during nick sensing and ligation to extend the versatility of the enzyme.  相似文献   

15.
Protein F1 is a surface protein of Streptococcus pyogenes that mediates high affinity binding to fibronectin (Fn) and facilitates S. pyogenes adherence and penetration into cells. The smallest portion of F1 known to retain the full binding potential of the intact protein is a stretch of 49 amino acids known as the functional upstream domain (FUD). Synthetic and recombinant versions of FUD were labeled with fluorescein isothiocyanate and used in fluorescence anisotropy experiments. These probes bound to Fn or the 70-kDa fragment of Fn with dissociation constants of 8-30 nm. Removal of the N-terminal seven residues of FUD did not cause a change in binding affinity. Further N- or C-terminal truncations resulted in complete loss of binding activity. Analysis of recombinant versions of the 70-kDa fragment that lacked one or several type I modules indicates that residues 1-7 of the 49-mer bind to type I modules I1 and I2 of the 27-kDa subfragment and the C-terminal residues bind to modules I4 and I5. Fluorescein isothiocyanate-labeled 49-mer also bound with lower affinity to large Fn fragments that lack the five type I modules of the 27-kDa fragment but contain the other seven type 1 modules of Fn. These results indicate that, although FUD has a general affinity for type I modules, high affinity binding of FUD to Fn is mediated by specific interactions with N-terminal type I modules.  相似文献   

16.
Through its interactions with proteins and proteoglycans, thrombospondin-1 (TSP-1) functions at the interface of the cell membrane and the extracellular matrix to regulate matrix structure and cellular phenotype. We have previously determined the structure of the high affinity heparin-binding domain of TSP-1, designated TSPN-1, in association with the synthetic heparin, Arixtra. To establish that the binding of TSPN-1 to Arixtra is representative of the association with naturally occurring heparins, we have determined the structures of TSPN-1 in complex with heparin oligosaccharides containing eight (dp8) and ten (dp10) subunits, by x-ray crystallography. We have found that dp8 and dp10 bind to TSPN-1 in a manner similar to Arixtra and that dp8 and dp10 induce the formation of trans and cis TSPN-1 dimers, respectively. In silico docking calculations partnered with our crystal structures support the importance of arginine residues in positions 29, 42, and 77 in binding sulfate groups of the dp8 and dp10 forms of heparin. The ability of several TSPN-1 domains to bind to glycosaminoglycans simultaneously probably increases the affinity of binding through multivalent interactions. The formation of cis and trans dimers of the TSPN-1 domain with relatively short segments of heparin further enhances the ability of TSP-1 to participate in high affinity binding to glycosaminoglycans. Dimer formation may also involve TSPN-1 domains from two separate TSP-1 molecules. This association would enable glycosaminoglycans to cluster TSP-1.  相似文献   

17.
Wyka IM  Dhar K  Binz SK  Wold MS 《Biochemistry》2003,42(44):12909-12918
Human replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), eukaryotic single-stranded DNA (ssDNA) binding protein required for DNA recombination, repair, and replication. The three subunits of human RPA are composed of six conserved DNA binding domains (DBDs). Deletion and mutational studies have identified a high-affinity DNA binding core in the central region of the 70 kDa subunit, composed of DBDs A and B. To define the roles of each DBD in DNA binding, monomeric and tandem DBD A and B domain chimeras were created and characterized. Individually, DBDs A and B have a very low intrinsic affinity for ssDNA. In contrast, tandem DBDs (AA, AB, BA, and BB) bind ssDNA with moderate to high affinity. The AA chimera had a much higher affinity for ssDNA than did the other tandem DBDs, demonstrating that DBD A has a higher intrinsic affinity for ssDNA than DBD B. The RPA-DNA interface is similar in both DBD A and DBD B. Mutational analysis was carried out to probe the relative contributions of the two domains to DNA binding. Mutation of polar residues in either core DBD resulted in a significant decrease in the affinity of the RPA complex for ssDNA. RPA complexes with pairs of mutated polar residues had lower affinities than those with single mutations. The decrease in affinity observed when polar mutations were combined suggests that multiple polar interactions contribute to the affinity of the RPA core for DNA. These results indicate that RPA-ssDNA interactions are the result of binding of multiple nonequivalent domains. Our data are consistent with a sequential binding model for RPA, in which DBD A is responsible for positioning and initial binding of the RPA complex while DBD A together with DBD B direct stable, high-affinity binding to ssDNA.  相似文献   

18.
19.
D Yin  H Sun  R F Weaver  T C Squier 《Biochemistry》1999,38(41):13654-13660
To investigate the role of hydrophobic interactions involving methionine side chains in facilitating the productive association between calmodulin (CaM) and the plasma membrane (PM) Ca-ATPase, we have substituted the polar amino acid Gln for Met at multiple positions in both the amino- and carboxyl-terminal domains of CaM. Conformationally sensitive fluorescence signals indicate that these mutations have little effect on the backbone fold of the carboxyl-terminal domain of CaM. The insertion of multiple Gln in either globular domain results in a decrease in the apparent affinity of CaM for the PM-Ca-ATPase. However, despite the multiple substitution of Gln for four methionines at positions 36, 51, 71, and 72 in the amino-terminal domain or for three methionines at positions 124, 144, and 145 in the carboxyl-terminal domain, these mutant CaMs are able to fully activate the PM-Ca-ATPase. Thus, although these CaM mutants have a decreased affinity for the CaM-binding site on the Ca-ATPase, they retain the ability to fully activate the Ca-ATPase at saturating concentrations of CaM. The role of individual methionines in modulating the affinity between the carboxyl terminus and the PM-Ca-ATPase was further investigated through the substitution of individual Met with Gln. Upon substitution of Met(124) and Met(144) with Gln, there is a 5- and 10-fold increase in the amount of CaM necessary to obtain half-maximal activation of the PM-Ca-ATPase, indicating that these methionine side chains participate in the high-affinity association between CaM and the PM-Ca-ATPase. However, substitution of Gln for Met(145) results in no change in the apparent affinity between CaM and the PM-Ca-ATPase, indicating that in contrast to all other known CaM targets, Met(145) does not participate in the interaction between CaM and the PM-Ca-ATPase. These results emphasize differences in the binding interactions between individual methionines in CaM and different target enzymes, and suggest that hydrophobic interactions between methionines in CaM and the binding site on the PM-Ca-ATPase are not necessary for enzyme activation. Calculation of the binding affinities of individual CaM domains associated with activation of the PM-Ca-ATPase suggests that mutations of methionines located in either domain of CaM can decrease the initial high-affinity association between CaM and the PM-Ca-ATPase, but have little effect upon the subsequent binding of the opposing globular domain. These results suggest that the initial associations between CaM and the CaM-binding sequence in the PM-Ca-ATPase are guided by nonspecific hydrophobic interactions involving both domains of CaM.  相似文献   

20.
Chromodomains are methylated histone binding modules that have been widely studied. Interestingly, some chromodomains are reported to bind to RNA and/or DNA, although the molecular basis of their RNA/DNA interactions has not been solved. Here we propose a novel binding mode for chromodomain-RNA interactions. Essential Sas-related acetyltransferase 1 (Esa1) contains a presumed chromodomain in addition to a histone acetyltransferase domain. We initially determined the solution structure of the Esa1 presumed chromodomain and showed it to consist of a well-folded structure containing a five-stranded β-barrel similar to the tudor domain rather than the canonical chromodomain. Furthermore, the domain showed no RNA/DNA binding ability. Because the N-terminus of the protein forms a helical turn, we prepared an N-terminally extended construct, which we surprisingly found to bind to poly(U) and to be critical for in vivo function. This extended protein contains an additional β-sheet that acts as a knot for the tudor domain and binds to oligo(U) and oligo(C) with greater affinity compared with other oligo-RNAs and DNAs examined thus far. The knot does not cause a global change in the core structure but induces a well-defined loop in the tudor domain itself, which is responsible for RNA binding. We made 47 point mutants in an esa1 mutant gene in yeast in which amino acids of the Esa1 knotted tudor domain were substituted to alanine residues and their functional abilities were examined. Interestingly, the knotted tudor domain mutations that were lethal to the yeast lost poly(U) binding ability. Amino acids that are related to RNA interaction sites, as revealed by both NMR and affinity binding experiments, are found to be important in vivo. These findings are the first demonstration of how the novel structure of the knotted tudor domain impacts on RNA binding and how this influences in vivo function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号