首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria+Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment.  相似文献   

2.
The phylogenetic analysis of groundwater amphipods is challenging due to the lack of suitable morphological characters. However, molecular phylogenies based on the 18S and 28S nuclear genes of two Crangonyctoidea species endemic to Iceland, Crymostygius thingvallensis and Crangonyx islandicus, support the taxonomy of these species on the basis of morphological characters. Molecular analyses suggest that the genus Crangonyx is paraphyletic, with the species that is found in Eurasia being highly divergent genetically from the species present in North America and Iceland. Studies of the phylogenetic relationships within the genus Niphargus also warrant further work. The nuclear ITS2 region has recently been proposed as a barcoding marker for plants and animals. In addition, ITS2 has been used to build phylogenies at high taxonomic levels by including its secondary structure. In this study, we want to evaluate the applicability of the ITS region for this group of species and describe its characteristics. The taxonomy of C. thingvallensis, as well as the paraphyly of the genus Crangonyx, is supported herein by phylogenies based on the ITS2 variation. The secondary structure and the length of the ITS2 sequences of the Crangonyctoidea and the Niphargidae species studied are highly variable and are characterized by duplications. The ITS2 sequence of Niphargus plateaui is the longest metazoan sequence deposited in the ITS2 database so far. Although saturation was observed in the nucleotide variation of this marker, the addition of the secondary structure information for the reconstruction of the phylogeny did not add support to the phylogenetic trees. The ITS1 region, which is known to be more variable than ITS2 and bears a large duplication within C. islandicus, was found to be less useful for phylogenetic reconstruction.  相似文献   

3.
An RNA secondary structure model is presented for the nuclear ribosomal internal transcribed spacers (ITS) based on comparative analysis of 340 sequences from the angiosperm family Asteraceae. The model based on covariation analysis agrees with structural features proposed in previous studies using mainly thermodynamic criteria and provides evidence for additional structural motifs within ITS1 and ITS2. The minimum structure model suggests that at least 20% of ITS1 and 38% of ITS2 nucleotide positions are involved in base pairing to form helices. The sequence alignment enabled by conserved structural features provides a framework for broadscale molecular evolutionary studies and the first family-level phylogeny of the Asteraceae based on nuclear DNA data. The phylogeny based on ITS sequence data is very well resolved and shows considerable congruence with relationships among major lineages of the family suggested by chloroplast DNA studies, including a monophyletic subfamily Asteroideae and a paraphyletic subfamily Cichorioideae. Combined analyses of ndhF and ITS sequences provide additional resolution and support for relationships in the family.  相似文献   

4.
Structural genomics meets phylogenetics and vice versa: Knowing rRNA secondary structures is a prerequisite for constructing rRNA alignments for inferring phylogenies, and inferring phylogenies is a precondition to understand the evolution of such rRNA secondary structures. Here, both scientific worlds go together. The rRNA internal transcribed spacer 2 (ITS2) region is a widely used phylogenetic marker. Because of its high variability at the sequence level, correct alignments have to take into account structural information. In this study, we examine the extent of the conservation in structure. We present (1) the homology modeled secondary structure of more than 20,000 ITS2 covering about 14,000 species; (2) a computational approach for homology modeling of rRNA structures, which additionally can be applied to other RNA families; and (3) a database providing about 25,000 ITS2 sequences with their associated secondary structures, a refined ITS2 specific general time reversible (GTR) substitution model, and a scoring matrix, available at http://its2.bioapps.biozentrum.uni-wuerzburg.de.  相似文献   

5.
The first step of any molecular phylogenetic analysis is the selection of the species and sequences to be included, the taxon sampling. Already here different pitfalls exist. Sequences can contain errors, annotations in databases can be inaccurate and even the taxonomic classification of a species can be wrong. Usually, these artefacts become evident only after calculation of the phylogenetic tree. Following, the taxon sampling has to be corrected iteratively. This can become tedious and time consuming, as in most cases the taxon sampling is de-coupled from the further steps of the phylogenetic analysis. Here, we present the ITS2 Workbench (http://its2.bioapps.biozentrum.uni-wuerzburg.de/), which eliminates this problem by a tight integration of taxon sampling, secondary structure prediction, multiple alignment and phylogenetic tree calculation. The ITS2 Workbench has access to more than 280,000 ITS2 sequences and their structures provided by the ITS2 database enabling sequence-structure based alignment and tree reconstruction. This allows the interactive improvement of the taxon sampling throughout the whole phylogenetic tree reconstruction process. Thus, the ITS2 Workbench enables a fast, interactive and iterative taxon sampling leading to more accurate ITS2 based phylogenies.  相似文献   

6.
We analyze the structure of the internal transcribed spacers ITS1 and ITS2 of the nuclear ribosomal DNA in the gymnosperm Gnetum, using a phylogenetic framework derived mainly from an intron in the nuclear low-copy LEAFY gene. Gnetum comprises 25-35 species in South America, Africa, and Asia, of which we sampled 16, each with two to six clones. Criteria used to assess ITS functionality were highly divergent nucleotide substitution, GC content, secondary structure, and incongruent phylogenetic placement of presumed paralogs. The length of ITS1 ranged from 225 to 986 bp and that of ITS2 from 259 to 305 bp, the largest ranges so far reported from seed plants. Gnetum ITS1 contains two informative sequence motifs, but different from other gymnosperms, there are only few and short (7-13 bp) tandem repeats. Gnetum ITS2 contains two structural motifs, modified in different clades by shortening of stems and loops. Conspecific sequences grouped together except for two recombinant pseudogenes that had ITS1 of one clade and ITS2 of another. Most of the pseudogenic ITS copies, paralogs, and putative chimeras occurred in a clade that according to a fossil-calibrated chloroplast-DNA clock has an age of a few million years. Based on morphology and chromosome numbers, the most plausible causes of the observed high levels of ITS polymorphism are hybridization, allopolyploidy, and introgression.  相似文献   

7.
8.
The internal transcribed spacer 2 (ITS2) is a small non-coding region located inside the nuclear ribosomal DNA cluster. ITS2 sequence variability is thought to be appropriate to differentiate species and for phylogenetic reconstructions analyses, which can be further improved if structural information is considered. We evaluated the potential of ITS2 as a molecular marker for phylogenetic inference in Calliphoridae (Diptera: Brachycera) using a broad range of inference methods and different substitution models, accounting or not for structural information. Sequence analyses revealed a hierarchically organized pattern of sequence variation and a small level of nucleotide substitution saturation. Intragenomic variation due to small sequence repeats was found mainly in the most variable domain (IV), but it has no significant impact on the phylogenetic signal at the species level. Inferred secondary structures revealed that GC pairs are more frequently found flanking bulges and loops regions in more conserved domains, thus ensuring structure stability. In the phylogenetic analyses, the use of substitution models accounting for structural information significantly improves phylogenetic inference in both neighbour-joining and Bayesian analyses, although the former provides limited resolution for dealing with highly divergent sequences. For Bayesian analyses, a significant improvement in likelihood was observed when considering structure information, although with small changes in topology and overall support, probably reflecting better evolutionary rates estimates. Based on these findings, ITS2 is a suitable molecular marker for phylogenetic analyses in Calliphoridae, at both species and generic level.  相似文献   

9.
A new sequence distance measure for phylogenetic tree construction   总被引:5,自引:0,他引:5  
MOTIVATION: Most existing approaches for phylogenetic inference use multiple alignment of sequences and assume some sort of an evolutionary model. The multiple alignment strategy does not work for all types of data, e.g. whole genome phylogeny, and the evolutionary models may not always be correct. We propose a new sequence distance measure based on the relative information between the sequences using Lempel-Ziv complexity. The distance matrix thus obtained can be used to construct phylogenetic trees. RESULTS: The proposed approach does not require sequence alignment and is totally automatic. The algorithm has successfully constructed consistent phylogenies for real and simulated data sets. AVAILABILITY: Available on request from the authors.  相似文献   

10.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8.The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold.The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure.In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.  相似文献   

11.
Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements. J. Exp. Zool. ( Mol. Dev. Evol.) 285:128-139, 1999.  相似文献   

12.
13.
Evolutionary relationships among representatives of Apiaceae (Umbelliferae) subfamily Apioideae have been inferred from phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer (ITS 1 and ITS 2) and plastid rpoC1 intron sequences. High levels of nucleotide sequence variation preclude the use of the ITS region for examining relationships across subfamilial boundaries in Apiaceae, whereas the rpoC1 intron is more suitably conserved for family-wide phylogenetic study but is too conserved for examining relationships among closely related taxa. In total, 126 ITS sequences from subfamily Apioideae and 100 rpoC1 intron sequences from Apiaceae (all three subfamilies) and outgroups Araliaceae and Pittosporaceae were examined. Phylogenies estimated using parsimony, neighbor-joining, and maximum likelihood methods reveal that: (1) Apiaceae subfamily Apioideae is monophyletic and is sister group to Apiaceae subfamily Saniculoideae; (2) Apiaceae subfamily Hydrocotyloideae is not monophyletic, with some members strongly allied to Araliaceae and others to Apioideae + Saniculoideae; and (3) Apiaceae subfamily Apioideae comprises several well-supported subclades, but none of these coincide with previously recognized tribal divisions based largely on morphological and anatomical characters of the fruit. Four major clades in Apioideae are provisionally recognized and provide the framework for future lower level phylogenetic analyses. A putative secondary structure model of the Daucus carota (carrot) rpoC1 group II intron is presented. Of its six major structural domains, domains II and III are the most, and domains V and VI the least, variable.  相似文献   

14.
The ongoing characterization of novel species creates the need for a molecular marker which can be used for species- and, simultaneously, for mega-systematics. Recently, the use of the internal transcribed spacer 2 (ITS2) sequence was suggested, as it shows a high divergence in sequence with an assumed conservation in structure. This hypothesis was mainly based on small-scale analyses, comparing a limited number of sequences. Here, we report a large-scale analysis of more than 54,000 currently known ITS2 sequences with the goal to evaluate the hypothesis of a conserved structural core and to assess its use for automated large-scale phylogenetics. Structure prediction revealed that the previously described core structure can be found for more than 5000 sequences in a wide variety of taxa within the eukaryotes, indicating that the core secondary structure is indeed conserved. This conserved structure allowed an automated alignment of extremely divergent sequences as exemplified for the ITS2 sequences of a ctenophorean eumetazoon and a volvocalean green alga. All classified sequences, together with their structures can be accessed at http://www.biozentrum.uni-wuerzburg.de/bioinformatik/projects/ITS2.html. Furthermore, we found that, although sample sequences are known for most major taxa, there exists a profound divergence in coverage, which might become a hindrance for general usage. In summary, our analysis strengthens the potential of ITS2 as a general phylogenetic marker and provides a data source for further ITS2-based analyses.  相似文献   

15.
16.
Restriction endonucleases (REases) are DNA-cleaving enzymes that have become indispensable tools in molecular biology. Type II REases are highly divergent in sequence despite their common structural core, function and, in some cases, common specificities towards DNA sequences. This makes it difficult to identify and classify them functionally based on sequence, and has hampered the efforts of specificity-engineering. Here, we define novel REase sequence motifs, which extend beyond the PD-(D/E)XK hallmark, and incorporate secondary structure information. The automated search using these motifs is carried out with a newly developed fast regular expression matching algorithm that accommodates long patterns with optional secondary structure constraints. Using this new tool, named Scan2S, motifs derived from REases with specificity towards GATC- and CGGG-containing DNA sequences successfully identify REases of the same specificity. Notably, some of these sequences are not identified by standard sequence detection tools. The new motifs highlight potential specificity-determining positions that do not fully overlap for the GATC- and the CCGG-recognizing REases and are candidates for specificity re-engineering.  相似文献   

17.
Page RD 《Nucleic acids research》2000,28(20):3839-3845
Comparative analysis is the preferred method of inferring RNA secondary structure, but its use requires considerable expertise and manual effort. As the importance of secondary structure for accurate sequence alignment and phylogenetic analysis becomes increasingly realised, the need for secondary structure models for diverse taxonomic groups becomes more pressing. The number of available structures bears little relation to the relative diversity or importance of the different taxonomic groups. Insects, for example, comprise the largest group of animals and yet are very poorly represented in secondary structure databases. This paper explores the utility of maximum weighted matching (MWM) to help automate the process of comparative analysis by inferring secondary structure for insect mitochondrial small subunit (12S) rRNA sequences. By combining information on correlated changes in substitutions and helix dot plots, MWM can rapidly generate plausible models of secondary structure. These models can be further refined using standard comparative techniques. This paper presents a secondary structure model for insect 12S rRNA based on an alignment of 225 insect sequences and an alignment for 16 exemplar insect sequences. This alignment is used as a template for a web server that automatically generates secondary structures for insect sequences.  相似文献   

18.
Deep-level diagnostic value of the rDNA-ITS region   总被引:14,自引:0,他引:14  
The similarity of certain reported angiosperm rDNA internal transcribed spacer (ITS) region sequences to those of green algae prompted our analysis of the deep-level phylogenetic signal in the highly conserved but short 5.8S and hypervariable ITS2 sequences. We found that 5.8S sequences yield phylogenetic trees similar to but less well supported than those generated by a ca. 10-fold longer alignment from rDNA-18S sequences, as well as independent evidence. We attribute this result to our finding that, compared to 18S, the 5.8S has a higher proportion of sites subject to vary and greater among-site substitution rate homogeneity. We also determined that our phylogenetic results are not likely affected by intramolecular compensatory mutation to maintain RNA secondary structure nor by evident systematic biases in base composition. Despite historical homology, there appears to be no ITS2 primary sequence similarity shared sufficient similarity to cluster correctly on the basis of alignability. Our results indicate that groups, however, share sufficient similarity to cluster correctly on the basis of alignability. Our results indicate that ITS region sequences can diagnose organismal origins and phylogenetic relationships at many phylogenetic levels and provide a useful paradigm for molecular evolutionary study.   相似文献   

19.
The ITS2 gene class shows a high sequence divergence among its members that have complicated its annotation and its use for reconstructing phylogenies at a higher taxonomical level (beyond species and genus). Several alignment strategies have been implemented to improve the ITS2 annotation quality and its use for phylogenetic inferences. Although, alignment based methods have been exploited to the top of its complexity to tackle both issues, no alignment-free approaches have been able to successfully address both topics. By contrast, the use of simple alignment-free classifiers, like the topological indices (TIs) containing information about the sequence and structure of ITS2, may reveal to be a useful approach for the gene prediction and for assessing the phylogenetic relationships of the ITS2 class in eukaryotes. Thus, we used the TI2BioP (Topological Indices to BioPolymers) methodology [1], [2], freely available at http://ti2biop.sourceforge.net/ to calculate two different TIs. One class was derived from the ITS2 artificial 2D structures generated from DNA strings and the other from the secondary structure inferred from RNA folding algorithms. Two alignment-free models based on Artificial Neural Networks were developed for the ITS2 class prediction using the two classes of TIs referred above. Both models showed similar performances on the training and the test sets reaching values above 95% in the overall classification. Due to the importance of the ITS2 region for fungi identification, a novel ITS2 genomic sequence was isolated from Petrakia sp. This sequence and the test set were used to comparatively evaluate the conventional classification models based on multiple sequence alignments like Hidden Markov based approaches, revealing the success of our models to identify novel ITS2 members. The isolated sequence was assessed using traditional and alignment-free based techniques applied to phylogenetic inference to complement the taxonomy of the Petrakia sp. fungal isolate.  相似文献   

20.
Abstract

Molecular sequence data have become prominent tools for phylogenetic relationship inference, particularly useful in the analysis of highly diverse taxonomic orders. Ribosomal RNA sequences provide markers that can be used in the study of phylogeny, because their function and structure have been conserved to a large extent throughout the evolutionary history of organisms. These sequences are inferred from cloned or enzymatically amplified gene sequences, or determined by direct RNA sequencing. The first step of the phylogenetic interpretation of nucleic acid sequence variations implies proper alignment of corresponding sequences from various organisms. Best alignment based on similarity criteria is greatly reinforced, in the case of ribosomal RNAs, by secondary structure homologies. Distance matrix methods to infer evolutionary trees are based on the assumption that the phylogenetic distance between each pair of organisms is proportional to the number of nucleotide substitution events. Computed tree inference methods usually take into consideration the possibility of unequal mutation rates among lineages. Divergence times can be estimated on the tree, provided that at least one lineage has been dated by fossil records. We have utilized this approach based on ribosomal RNA sequence comparison to investigate the phylogenetic relationship between dinoflagellated and other eukaryote protists, and to refine controverse phylogenies of the class Dinophycae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号