首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unusual Y chromosome with a primary constriction inside the long-arm heterochromatin was found in the amniocytes of a 38-year-old woman. The same Y chromosome was found in her husband and brother-in-law, thus proving that it was already present in the father. FISH with alphoid DNA showed hybridization signals at the usual position of the Y centromere but not at the primary constriction. Centromere proteins (CENP)-A, CENP-C, and CENP-E could not be detected at the site of the canonic centromere but were present at the new constriction, whereas CENP-B was not detected on this Y chromosome. Experiments with 82 Y-specific loci distributed throughout the chromosome confirmed that no gross deletion or rearrangement had taken place, and that the Y chromosome belonged to a haplogroup whose members have a mean alphoid array of 770 kb (range 430-1,600 kb), whereas that of this case was approximately 250 kb. Thus, this Y chromosome appeared to be deleted for part of the alphoid DNA. It seems likely that this deletion was responsible for the silencing of the normal centromere and that the activation of the neocentromere prevented the loss of this chromosome. Alternatively, neocentromere activation could have occurred first and stimulated inactivation of the normal centromere by partial deletion. Whatever the mechanism, the presence of this chromosome in three generations demonstrates that it functions sufficiently well in mitosis for male sex determination and fertility and that neocentromeres can be transmitted normally at meiosis.  相似文献   

2.
We have mapped the positions of topoisomerase II binding sites at the centromere of the human Y chromosome using etoposide-mediated DNA cleavage. A single region of cleavage is seen at normal centromeres, spanning ~50 kb within the centromeric alphoid array, but this pattern is abolished at two inactive centromeres. It therefore provides a marker for the position of the active centromere. Although the underlying centromeric DNA structure is variable, the position of the centromere measured in this way is fixed relative to the Yp edge of the array, and has retained the same position for >100 000 years.  相似文献   

3.
Summary Stable dicentric chromosomes behave as monocentrics because one of the centromeres is inactive. The cause of centromere inactivation is unknown; changes in centromere chromatin conformation and loss of centromeric DNA elements have been proposed as possible mechanisms. We studied the phenomenon of inactivation in two Y centromeres, having as a control genetically identical active Y centromeres. The two cases have the following karyotypes: 45,X/46,X,i(Y)(q12) and 46,XY/ 47,XY,+t(X;Y)(p22.3;p11.3). The analysis of the behaviour of the active and inactive Y chromosome centromeres after Da-Dapi staining, CREST immunofluorescence, and in situ hybridization with centromeric probes leads us to conclude that, in the case of the isochromosome, a true deletion of centromeric chromatin is responsible for its stability, whereas in the second case, stability of the dicentric (X;Y) is the result of centromere chromatin modification.  相似文献   

4.
Human centromeres are mainly composed of alpha satellite DNA hierarchically organized as higher-order repeats (HORs). Alpha satellite dynamics is shown by sequence homogenization in centromeric arrays and by its transfer to other centromeric locations, for example, during the maturation of new centromeres. We identified during prenatal aneuploidy diagnosis by fluorescent in situ hybridization a de novo insertion of alpha satellite DNA from the centromere of chromosome 18 (D18Z1) into cytoband 15q26. Although bound by CENP-B, this locus did not acquire centromeric functionality as demonstrated by the lack of constriction and the absence of CENP-A binding. The insertion was associated with a 2.8-kbp deletion and likely occurred in the paternal germline. The site was enriched in long terminal repeats and located ∼10 Mbp from the location where a centromere was ancestrally seeded and became inactive in the common ancestor of humans and apes 20–25 million years ago. Long-read mapping to the T2T-CHM13 human genome assembly revealed that the insertion derives from a specific region of chromosome 18 centromeric 12-mer HOR array in which the monomer size follows a regular pattern. The rearrangement did not directly disrupt any gene or predicted regulatory element and did not alter the methylation status of the surrounding region, consistent with the absence of phenotypic consequences in the carrier. This case demonstrates a likely rare but new class of structural variation that we name “alpha satellite insertion.” It also expands our knowledge on alphoid DNA dynamics and conveys the possibility that alphoid arrays can relocate near vestigial centromeric sites.  相似文献   

5.
Human centromeres remain poorly characterized regions of the human genome despite their importance for the maintenance of chromosomes. In part this is due to the difficulty of cloning of highly repetitive DNA fragments and distinguishing chromosome-specific clones in a genomic library. In this work we report the highly selective isolation of human centromeric DNA using transformation-associated recombination (TAR) cloning. A TAR vector with alphoid DNA monomers as targeting sequences was used to isolate large centromeric regions of human chromosomes 2, 5, 8, 11, 15, 19, 21 and 22 from human cells as well as monochromosomal hybrid cells. The alphoid DNA array was also isolated from the 12 Mb human mini-chromosome ΔYq74 that contained the minimum amount of alphoid DNA required for proper chromosome segregation. Preliminary results of the structural analyses of different centromeres are reported in this paper. The ability of the cloned human centromeric regions to support human artificial chromosome (HAC) formation was assessed by transfection into human HT1080 cells. Centromeric clones from ΔYq74 did not support the formation of HACs, indicating that the requirements for the existence of a functional centromere on an endogenous chromosome and those for forming a de novo centromere may be distinct. A construct with an alphoid DNA array from chromosome 22 with no detectable CENP-B motifs formed mitotically stable HACs in the absence of drug selection without detectable acquisition of host DNAs. In summary, our results demonstrated that TAR cloning is a useful tool for investigating human centromere organization and the structural requirements for formation of HAC vectors that might have a potential for therapeutic applications.  相似文献   

6.
A familial, constitutionally rearranged human chromosome 17 is deleted for much of the DNA in its centromeric region but retains full mitotic centromere activity. Fluorescence in situ hybridization, pulsed-field gel electrophoresis, and Southern blot analysis of the residual centromeric region revealed a approximately 700-kb centromeric array of tandemly repeated alpha satellite DNA that was only approximately 20 to 30% as large as a normal array. This deletion was associated with a reduction in the amount of the centromere-specific antigen CENP-B detected by indirect immunofluorescence. The coincidence of the primary constriction, the small residual array of alpha satellite DNA, and the reduced amount of detectable CENP-B support the hypothesis that CENP-B is associated with alpha satellite DNA. Furthermore, the finding that both the deleted chromosome 17 and its derivative supernumerary fragment retained mitotic function and possess centromeric protein antigens suggests that human centromeres are structurally and functionally repetitive.  相似文献   

7.
Centromere protein (CENP) B boxes, recognition sequences of CENP-B, appear at regular intervals in human centromeric alpha-satellite DNA (alphoid DNA). In this study, to determine whether information carried by the primary sequence of alphoid DNA is involved in assembly of functional human centromeres, we created four kinds of synthetic repetitive sequences: modified alphoid DNA with point mutations in all CENP-B boxes, resulting in loss of all CENP-B binding activity; unmodified alphoid DNA containing functional CENP-B boxes; and nonalphoid repetitive DNA sequences with or without functional CENP-B boxes. These four synthetic repetitive DNAs were introduced into cultured human cells (HT1080), and de novo centromere assembly was assessed using the mammalian artificial chromosome (MAC) formation assay. We found that both the CENP-B box and the alphoid DNA sequence are required for de novo MAC formation and assembly of functional centromere components such as CENP-A, CENP-C, and CENP-E. Using the chromatin immunoprecipitation assay, we found that direct assembly of CENP-A and CENP-B in cells with synthetic alphoid DNA required functional CENP-B boxes. To the best of our knowledge, this is the first reported evidence of a functional molecular link between a centromere-specific DNA sequence and centromeric chromatin assembly in humans.  相似文献   

8.
Recently, human artificial chromosomes featuring functional centromeres have been generated efficiently from naked synthetic alphoid DNA containing CENP-B boxes as a de novo mechanism in a human cultured cell line, but not from the synthetic alphoid DNA only containing mutations within CENP-B boxes, indicating that CENP-B has some functions in assembling centromere/kinetochore components on alphoid DNA. To investigate whether any interactions exist between CENP-B and the other centromere proteins, we screened a cDNA library by yeast two-hybrid analysis. An interaction between CENP-B and CENP-C was detected, and the CENP-C domains required were determined to overlap with three Mif2 homologous regions, which were also revealed to be involved in the CENP-C assembly of centromeres by expression of truncated polypeptides in cultured cells. Overproduction of truncated CENP-B containing no CENP-C interaction domains caused abnormal duplication of CENP-C domains at G2 and cell cycle delay at metaphase. These results suggest that the interaction between CENP-B and CENP-C may be involved in the correct assembly of CENP-C on alphoid DNA. In other words, a possible molecular linkage may exist between one of the kinetochore components and human centromere DNA through CENP-B/CENP-B box interaction.  相似文献   

9.
Endogenous human centromeres form on megabase-sized arrays of tandemly repeated alpha satellite DNA. Human neocentromeres form epigenetically at ectopic sites devoid of alpha satellite DNA and permit analysis of centromeric DNA and chromatin organization. In this study, we present molecular cytogenetic and CENP-A chromatin immunoprecipitation (ChIP) on CHIP analyses of two neocentromeres that have formed in chromosome band 8q21 each with a unique DNA and CENP-A chromatin configuration. The first neocentromere was found on a neodicentric chromosome 8 with an inactivated endogenous centromere, where the centromeric activity and CENP-A domain were repositioned to band 8q21 on a large tandemly repeated DNA. This is the first example of a neocentromere forming on repetitive DNA, as all other mapped neocentromeres have formed on single copy DNA. Quantitative fluorescent in situ hybridization (FISH) analysis showed a 60% reduction in the alpha satellite array size at the inactive centromere compared to the active centromere on the normal chromosome 8. This neodicentric chromosome may provide insight into centromere inactivation and the role of tandem DNA in centromere structure. The second neocentromere was found on a neocentric ring chromosome that contained the 8q21 tandemly repeated DNA, although the neocentromere was localized to a different genomic region. Interestingly, this neocentromere is composed of two distinct CENP-A domains in bands 8q21 and 8q24, which are brought into closer proximity on the ring chromosome. This neocentromere suggests that chromosomal rearrangement and DNA breakage may be involved in neocentromere formation. These novel examples provide insight into the formation and structure of human neocentromeres.  相似文献   

10.
Stable maize (Zea mays) chromosomes were recovered from an unstable dicentric containing large and small versions of the B chromosome centromere. In the stable chromosome, the smaller centromere had become inactivated. This inactive centromere can be inherited from one generation to the next attached to the active version and loses all known cytological and molecular properties of active centromeres. When separated from the active centromere by intrachromosomal recombination, the inactive centromere can be reactivated. The reactivated centromere regains the molecular attributes of activity in anaphase I of meiosis. When two copies of the dicentric chromosome with one active and one inactive centromere are present, homologous chromosome pairing reduces the frequency of intrachromosomal recombination and thus decreases, but does not eliminate, the reactivation of inactive centromeres. These findings indicate an epigenetic component to centromere specification in that centromere inactivation can be directed by joining two centromeres in opposition. These findings also indicate a structural aspect to centromere specification revealed by the gain of activity at the site of the previously inactive sequences.  相似文献   

11.
We have screened for the presence of two centromere autoantigens, CENP-B (80 kDa) and CENP-C (140 kDa) at the inactive centromere of a naturally occurring stable dicentric chromosome using specific antibodies that do not cross-react with any other chromosomal proteins. In order to discriminate between the active and inactive centromeres on this chromosome we have developed a modification of the standard methanol/acetic acid fixation procedure that allows us to obtain high-quality cytological spreads that retain antigenicity with the anti-centromere antibodies. We have noted three differences in the immunostaining patterns with specific anti-CENP-B and CENP-C antibodies. (1) The amount of detectable CENP-B varies from chromosome to chromosome. The amount of CENPC appears to be more or less the same on all chromosomes. (2) CENP-B is present at both active and inactive centromeres of stable dicentric autosomes. CENP-C is not detectable at the inactive centromeres. (3) While immunofluorescence with anti-CENP-C antibodies typically gives two discrete spots, staining with anti-CENP-B often appears as a single bright bar connecting both sister centromeres. This suggests that while CENP-C may be confined to the outer centromere in the kinetochore region, CENP-B may be distributed throughout the entire centromere. Our data suggest that CENP-C is likely to be a component of some invariant chromosomal substructure, such as the kinetochore. CENPB may be involved in some other aspect of centromere function, such as chromosome movement or DNA packaging.Abbreviations CENP centromere protein  相似文献   

12.
T Fukagawa  C Pendon  J Morris    W Brown 《The EMBO journal》1999,18(15):4196-4209
CENP-C is an evolutionarily conserved centromeric protein. We have used the chicken DT40 cell line to test the idea that CENP-C is sufficient as well as necessary for the formation of a functional centromere. We have compared the effects of disrupting the localization of CENP-C with those of inducibly overexpressing the protein. Removing CENP-C from the centromere causes disassembly of the centromere protein complex and blocks cells at the metaphase-anaphase junction. Overexpressed CENP-C is associated with an increase in errors of chromosome segregation and inhibits the completion of mitosis. However, the excess CENP-C does not disrupt the native centromeres detectably and does not associate with another conserved centromere protein, ZW10. The distribution of the excess CENP-C changes during the cell cycle. In metaphase, the excess CENP-C coats the chromosome arms. At the metaphase-anaphase transition, the excess CENP-C clusters, and during interphase it is present in large bodies which form around pre-existing centromeres which are also clustered. These results indicate that CENP-C is necessary but not sufficient for the formation of a functional centromere and suggest that the structure of CENP-C may be regulated during the cell cycle.  相似文献   

13.
CENP-G in neocentromeres and inactive centromeres   总被引:7,自引:0,他引:7  
Gimelli G  Zuffardi O  Giglio S  Zeng C  He D 《Chromosoma》2000,109(5):328-333
CENP-G is a novel constitutive centromere-specific protein localized to the kinetochore inner plate and subjacent region. It has been identified as associating specifically with the alpha-1 subfamily of alpha-satellite DNA. In the present work, the localization of CENP-G was compared with that of other CENPs by immunofluorescence and fluorescence in situ hybridization. Studies were carried out on four abnormal human centromeres: two neocentromeres and two inactive centromeres. CENP-G was detected in one of the two inactive centromeres but not in the other that shows a partial deletion of the alphoid DNA. Interestingly, CENP-G is also present in neocentromeres, which lack alphoid DNA sequences, and in the human Y chromosome, which lacks the alpha-1 type of satellite DNA. These data provide further evidence that CENP-G may be an essential factor in centromeric function and that in centromeres lacking the alpha-1 subfamily of alphoid DNA, other DNA sequences are able to bind CENP-G.  相似文献   

14.
Fu S  Gao Z  Birchler J  Han F 《遗传学报》2012,39(3):125-130
Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis. Each chromosome has one centromere region, which is essential for accurate division of the genetic material. Recently, chromosomes containing two centromere regions (called dicentric chromosomes) have been found in maize and wheat. Interestingly, some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated. Because such arrays maintain their typical structure for both active and inactive centromeres, the specification of centromere activity has an epigenetic component independent of the DNA sequence. Under some circumstances, the inactive centromeres may recover centromere function, which is called centromere reactivation. Recent studies have highlighted the important changes, such as DNA methylation and histone modification, that occur during centromere inactivation and reactivation.  相似文献   

15.
Fifty chromosomally normal couples with three or more miscarriages were examined using fluorescent in situ hybridisation (FISH) and a library of subtelomere-specific probes together with alphoid repeats mapping to the acrocentric centromeres. Six abnormalities were found. Firstly, a cryptic reciprocal subtelomere translocation between the long arm of a chromosome 3 and the short arm of a chromosome 10. The other five cryptic abnormalities involved the acrocentric chromosome pericentromeric regions and in one case also Yp. Two patients had a rearranged chromosome 13, where the centromeric region was found to be derived from the short arm, centromere and proximal long arm of chromosome 15. Another two patients had a derived chromosome 22, where the centromere was replaced by two other centromeres, one derived from chromosome 14 and the other from either chromosome 13 or 21, while one patient had the subtelomere region of Yp translocated onto the short arm of a chromosome 21. These abnormalities may be the underlying cause of the recurrent miscarriages, because they may result in abnormal pairing configurations at meiosis leading to non-disjunction of whole chromosomes at metaphase I. The frequency of rearrangements seen in the recurrent miscarriage patient population was significantly different from that in the control group ( P=0.0096, Fisher's exact test) due to the acrocentric pericentromeric abnormalities.  相似文献   

16.
Summary The evidence that the Cd technique identifies the kinetochore was based on the finding that inactive centromeres are C-positive but Cd-negative. The identity between Cd-positivity and centromere function is now confirmed by the reverse procedure: a stable abnormal chromosome is consistently C-negative but Cd-positive at its single centromeric constriction. This demonstrates that the Cd dots are not a relic of C-banding but identify the active centromere.  相似文献   

17.
Summary Two previous single case reports from the literature showed the presence or absence of centromeric antigens at the site of the inactive centromeres in one (X;X) and in one (9;11) dicentric chromosome. We studied nine different dicentric chromosomes using anticentromeric antibodies and immunofluorescence techniques. In the four autosomal dicentrics the inactive centromere was consistently positive while the dicentrics composed of two X chromosomes were either positive or negative; one case of (X;Y) dicentric was negative. The results indicate that the X chromosome mode of replication may be involved in the suppression of immunofluorescence at the site of the inactive centromere and that one centromere of the dicentric chromosome may lose its function but conserve some of its antigenic properties. This indicates that not all these antigens play a rôle in the microtubules-centromere interaction.  相似文献   

18.
A chromosome with two functional centromeres is cytologically unstable and can only be stabilized when one of the two centromeres becomes inactivated via poorly understood mechanisms. Here, we report a transmissible chromosome with multiple centromeres in wheat. This chromosome encompassed one large and two small domains containing the centromeric histone CENH3. The two small centromeres are in a close vicinity and often fused as a single centromere on metaphase chromosomes. This fused centromere contained approximately 30% of the CENH3 compared to the large centromere. An intact tricentric chromosome was transmitted to about 70% of the progenies, which was likely a consequence of the dominating pulling capacity of the large centromere during anaphases of meiosis. The tricentric chromosome showed characteristics typical to dicentric chromosomes, including chromosome breaks and centromere inactivation. Remarkably, inactivation was always associated with the small centromeres, indicating that small centromeres are less likely to survive than large ones in dicentric chromosomes. The inactivation of the small centromeres also coincided with changes of specific histone modifications, including H3K27me2 and H3K27me3, of the pericentromeric chromatin.  相似文献   

19.
Centromeric alpha satellite DNA sequences are linked to the kinetochore CENP-B proteins and therefore may be involved in the centromeric function. The high heterogeneity of size of the alphoid blocks raises the question of whether small amount of alphoid DNA or "deletion" of this block may have a pathological significance in the human centromere. In the present study, we analysed the correlation between size variations of alphoid DNA and kinetochore sizes in human chromosome 21 by molecular cytogenetic and immunochemical techniques. FISH analyses of alpha satellite DNA sizes in chromosome 21 homologues correlated well with the variation of their physical size as determined by pulsed field gel electrophoresis (PFGE). By contrast, the immunostaining study of the same homologous chromosomes with antikinetochore antibodies suggested that there is no positive correlation between the alpha satellite DNA block and kinetochore sizes. FISH analysis of chromosome 21-specific alphoid DNA and immunostaining of kinetochore extended interphase chromatin fibers indicate that centromeric kinetochore-specific proteins bind to restricted areas of centromeric DNA arrays. Thus, probably, restricted regions of centromeric DNA play an important role in kinetochore formation, centromeric function and abnormal chromosome segregation leading to non-disjunction.  相似文献   

20.
Kinetochore development in two dicentric chromosomes in man   总被引:1,自引:1,他引:0  
Summary Two dicentric human chromosomes were investigated with light and electron microscopic techniques. One chromosome, with a translocation tdic(5;13)(p12;p12), behaved as a dicentric in about half the cells: it had two primary constrictions; C- and Cd-banding showed two centromeres; and the CREST antikinetochore antibody reacted with the two centromeres with equal affinity. Electron microscopic analysis of sectioned metaphases showed that the dicentric could develop kinetochores at both centromeres simultaneously. The other dicentric chromosome, tdic(21;21)(q22;q22), occasionally showed two primary constrictions, but both C-and Cd-banding distinguished between an active and an inactive centromere, and the CREST antibody reacted only weakly with the inactive centromere. Electron microscopy showed kinetochore development at only one centromere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号