首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poliovirus capsid precursor polyprotein, P1, is cotranslationally modified by the addition of myristic acid. We have examined the importance of myristylation of the P1 capsid precursor during the poliovirus assembly process by using a recently described recombinant vaccinia virus expression system which allows the independent production of the poliovirus P1 protein and the poliovirus 3CD proteinase (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991). We constructed a site-directed mutation in the poliovirus cDNA encoding an alanine at the second amino acid position of P1 in place of the glycine residue required for the myristic acid addition and isolated a recombinant vaccinia virus (VVP1myr-) that expressed a nonmyristylated form of the P1 capsid precursor. The 3CD proteinase expressed by a coinfecting vaccinia virus, VVP3, proteolytically processed the nonmyristylated precursor P1 expressed by VVP1myr-. However, the processed capsid proteins, VP0, VP3, and VP1, did not assemble into 14S or 75S subviral particles, in contrast to the VP0, VP3, and VP1 proteins derived from the myristylated P1 precursor. When cells were coinfected with VVP1myr- and poliovirus type 1, the nonmyristylated P1 precursor expressed by VVP1myr- was processed by 3CD expressed by poliovirus, and the nonmyristylated VP0-VP3-VP1 (VP0-3-1) protomers were incorporated into capsid particles and virions which sedimented through a 30% sucrose cushion. Thus, the nonmyristylated P1 precursor and VP0-3-1 protomers were not excluded from sites of virion assembly, and the assembly defects observed for the nonmyristylated protomers were overcome in the presence of myristylated capsid protomers expressed by poliovirus. We conclude that myristylation of the poliovirus P1 capsid precursor plays an important role during poliovirus assembly by facilitating the appropriate interactions required between 5S protomer subunits to form stable 14S pentamers. The results of these studies demonstrate that the independent expression of the poliovirus P1 and 3CD proteins by using recombinant vaccinia viruses provides a unique experimental tool for analyzing the dynamics of the poliovirus assembly process.  相似文献   

2.
The assembly of infectious poliovirus virions requires a proteolytic cleavage between an asparagine-serine amino acid pair (the maturation cleavage site) in VP0 after encapsidation of the genomic RNA. In this study, we have investigated the effects that mutations in the maturation cleavage site have on P1 polyprotein processing, assembly of subviral intermediates, and encapsidation of the viral genomic RNA. We have made mutations in the maturation cleavage site which change the asparagine-serine amino acid pair to either glutamine-glycine or threonine-serine. The mutations were created by site-directed mutagenesis of P1 cDNAs which were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses. The P1 polyproteins expressed from the recombinant vaccinia viruses were analyzed for proteolytic processing and assembly defects in cells coinfected with a recombinant vaccinia virus (VV-P3) that expresses the poliovirus 3CD protease. A trans complementation system using a defective poliovirus genome was utilized to assess the capacity of the mutant P1 proteins to encapsidate genomic RNA (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The mutant P1 proteins containing the glutamine-glycine amino acid pair (VP4-QG) and the threonine-serine pair (VP4-TS) were processed by 3CD provided in trans from VV-P3. The processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor VP4-QG were unstable and failed to assemble into subviral structures in cells coinfected with VV-P3. However, the capsid proteins derived from VP4-QG did assemble into empty-capsid-like structures in the presence of the defective poliovirus genome. In contrast, the capsid proteins derived from processing of the VP4-TS mutant assembled into subviral intermediates both in the presence and in the absence of the defective genome RNA. By a sedimentation analysis, we determined that the capsid proteins derived from the VP4-TS precursor encapsidated the defective genome RNA. However, the cleavage of VP0 to VP4 and VP2 was delayed, resulting in the accumulation of provirions. The maturation cleavage of the VP0 protein containing the VP4-TS mutation was accelerated by incubation of the provirions at 37 degrees C. The results of these studies demonstrate that mutations in the maturation cleavage site have profound effects on the subsequent capability of the capsid proteins to assemble and provide evidence for the existence of the provirion as an assembly intermediate.  相似文献   

3.
The use of recombinant viruses for the expression of a wide array of foreign proteins has become commonplace during the last few years. Recently, we have described the construction and characterization of chimeric human immunodeficiency virus type 1 (HIV-1)-poliovirus genomes in which the gag and pol genes of HIV-1 have been substituted for the VP2 and VP3 capsid genes of the P1 capsid precursor region of poliovirus. Transfection of these RNAs into tissue culture cells results in replication of the RNA genome and expression of HIV-1-P1 fusion proteins (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Here we report on the encapsidation and amplification of the minireplicons to obtain sufficient quantities for biological characterization. To do this, HIV-1-poliovirus minireplicon genomes containing the gag or pol gene were transfected into cells previously infected with a recombinant vaccinia virus (VV-P1) which expresses the poliovirus capsid precursor protein, P1 (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991). The chimeric minireplicons replicated and expressed the appropriate HIV-1-P1 fusion proteins as determined by immunoprecipitation with HIV-1-specific antibodies. The encapsidated genomes were isolated by ultracentrifugation. Reinfection of cells with the encapsidated chimeric RNA genomes resulted in expression of the HIV-1-Gag-P1 or HIV-1-Pol-P1 fusion protein. Serial passaging of the encapsidated chimeric HIV-1-poliovirus genomes was accomplished by coinfecting cells with the encapsidated minireplicons and VV-P1, resulting in stocks of the encapsidated minireplicons. Northern (RNA) blot analysis of passaged material revealed that no detectable deletions of the chimeric genomes occurred during 14 serial passages. Infection of cells by the encapsidated minireplicons was blocked by antipoliovirus antibodies. Coinfection of cells with encapsidated minireplicons and type 1 Sabin poliovirus resulted in encapsidation of the chimeric genomes by wild-type poliovirus as measured by immunoprecipitation of the HIV-1-P1 fusion proteins with HIV-1-specific antibodies. The results of this study demonstrate the encapsidation of poliovirus minireplicons which express foreign proteins and point to the future use of this system as a potential vaccine vector.  相似文献   

4.
Assembly of poliovirus virions requires proteolytic cleavage of the P1 capsid precursor polyprotein between two separate glutamine-glycine (QG) amino acid pairs by the viral protease 3CD. In this study, we have investigated the effects on P1 polyprotein processing and subsequent assembly of processed capsid proteins caused by substitution of the glycine residue at the individual QG cleavage sites with valine (QG-->QV). P1 cDNAs encoding the valine substitutions were created by site-directed mutagenesis and were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses which expressed the mutant P1 precursors. The recombinant vaccinia virus-expressed mutant P1 polyproteins were analyzed for proteolytic processing defects in cells coinfected with a recombinant vaccinia virus (VVP3) that expresses the poliovirus 3CD protease and for processing and assembly defects by using a trans complementation system in which P1-expressing recombinant vaccinia viruses provide capsid precursor to a defective poliovirus genome that does not express functional capsid proteins (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The QV-substituted precursors were proteolytically processed at the altered sites both in cells coinfected with VVP3 and in cells coinfected with defective poliovirus, although the kinetics of cleavage at the altered sites were slower than those of cleavage at the wild-type QG site in the precursor. Completely processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor containing a valine at the amino terminus of VP3 (VP3-G001V) were unstable and failed to assemble stable subviral structures in cells coinfected with defective poliovirus. In contrast, capsid proteins derived from the P1 precursor with a valine substitution at the amino terminus of VP1 (VP1-G001V) assembled empty capsid particles but were deficient in assembling RNA-containing virions. The assembly characteristics of the VP1-G001V mutant were compared with those of a previously described VP3-VP1 cleavage site mutant (K. Kirkegaard and B. Nelsen, J. Virol. 64:185-194, 1990) which contained a deletion of the first four amino-terminal residues of VP1 (VP1-delta 1-4) and which was reconstructed for our studies into the recombinant vaccinia virus system. Complete proteolytic processing of the VP1-delta 1-4 precursor also occurred more slowly than complete cleavage of the wild-type precursor, and formation of virions was delayed; however, capsid proteins derived from the VP1-G001V mutant assembled RNA-containing virions less efficiently than those derived from the VP1-delta 1-4 precursor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Poliovirus genomes which contain small regions of the human immunodeficiency virus type 1 (HIV-1) gag, pol, and env genes substituted in frame for the P1 capsid region replicate and express HIV-1 proteins as fusion proteins with the P1 capsid precursor protein upon transfection into cells (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Since these genomes, referred to as replicons, do not express capsid proteins, a complementation system was developed to encapsidate the genomes by providing P1 capsid proteins in trans from a recombinant vaccinia virus, VV-P1. Virus stocks of encapsidated replicons were generated after serial passage of the replicon genomes into cells previously infected with VV-P1 (D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993). Using this system, we have further defined the role of the P1 region in viral protein expression and RNA encapsidation. In the present study, we constructed poliovirus replicons which contain the complete 1,492-bp gag gene of HIV-1 substituted for the entire P1 region of poliovirus. To investigate whether the VP4 coding region was required for the replication and encapsidation of poliovirus RNA, a second replicon in which the complete gag gene was substituted for the VP2, VP3, and VP1 capsid sequences was constructed. Transfection of replicon RNA with and without the VP4 coding region into cells resulted in similar levels of expression of the HIV-1 Gag protein and poliovirus 3CD protein, as indicated by immunoprecipitation using specific antibodies. Northern (RNA) blot analysis of RNA from transfected cells demonstrated comparable levels of RNA replication for each replicon. Transfection of the replicon genomes into cells infected with VV-P1 resulted in the encapsidation of the genomes; serial passage in the presence of VV-P1 resulted in the generation of virus stocks of encapsidated replicons. Analysis of the levels of protein expression and encapsidated replicon RNA from virus stocks after 21 serial passages of the replicon genomes with VV-P1 indicated that the replicon which contained the VP4 coding region was present at a higher level than the replicon which contained a complete substitution of the P1 capsid sequences. These differences in encapsidation, though, were not detected after only two serial passages of the replicons with VV-P1 or upon coinfection and serial passage with type 1 Sabin poliovirus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The effectiveness of attenuated poliovirus vaccines when given orally to induce both systemic and mucosal immune responses against poliovirus has resulted in an effort to develop poliovirus-based vectors to express foreign proteins. We have previously described the construction of poliovirus genomes (referred to as replicons) in which the complete human immunodeficiency virus type 1 (HIV-1) gag gene was substituted for the capsid gene (P1) (D.C. Porter, D.C. Ansardi, and C.D. Morrow, J. Virol. 69:1548-1555, 1995). Infection of cells with encapsidated replicons resulted in the expression of a 55-kDa protein. To further characterize the biological features of the HIV-1 Gag proteins expressed in cells infected with encapsidated replicons, we utilized biochemical analysis and electron microscopy. Expression of the 55-kDa protein in cells infected with encapsidated replicons resulted in myristylation of the Pr55gag protein. The Gag precursor protein was released from infected cells; analysis on sucrose density gradients revealed that the precursor sedimented at a density consistent with that of an HIV-1 virus-like particle. Analysis of replicon-infected cells by electron microscopy demonstrated the presence of condensed structures at the plasma membrane and the release of virus-like particles. These studies demonstrate that poliovirus-based vectors can be used to express foreign proteins which require posttranslational modifications, such as myristylation, and assemble into higher-order structures, providing a foundation for the future use of poliovirus replicons as vaccine vectors.  相似文献   

7.
Defective interfering particles of poliovirus. II. Nature of the defect   总被引:29,自引:0,他引:29  
Poliovirus defective, interfering particles in which about 15% of the standard viral RNA is deleted have been described (Cole et al., 1971). Stocks of DI3 particles more than 99% free of standard poliovirus were prepared by centrifugation of mixed preparations in CsCl gradients. Using purified DI particles, it was found that DI particles can carry out most of the standard poliovirus functions including inhibition of cellular macromolecular synthesis, production of viral RNA and production of virus-specific protein. Neither the kinetics nor extent of viral RNA or protein synthesis differed between DI particle-infected cells and standard virus-infected cells.Newly made virions, capsid proteins, and the capsid protein precursor (NCVP 1) were totally absent in DI particle-infected cells. All of the other viral proteins were present. DI-infected cells briefly labeled with amino acids also contained a new polypeptide, DI-P, which was apparently the residual fragment of NCVP 1 encoded by the DI genome. It was very unstable, being rapidly degraded to acid-soluble fragments. When the cleavage of viral proteins was inhibited with amino acid analogs, precursors of the viral proteins were generated. Those precursors which should have contained NCVP 1 had molecular weights 30,000 to 40,000 daltons lower in DI-infected cells than in standard virus-infected cells. This is the amount of protein encoded by 15% of the standard poliovirus genome which is the per cent of the standard RNA sequence not represented in DI RNA.Poliovirus DI particles therefore appear to be deletion mutants lacking RNA encoding about one-third of the capsid protein precursor. Whether the deletion is internal or terminal remains to be determined.  相似文献   

8.
The assembly process of poliovirus occurs via an ordered proteolytic processing of the capsid precursor protein, P1, by the virus-encoded proteinase 3CD. To further delineate this process, we have isolated a recombinant vaccinia virus which expresses, upon infection, the poliovirus P1 capsid precursor polyprotein with an authentic carboxy terminus. Coinfection of HeLa cells with the P1-expressing vaccinia virus and with a second recombinant vaccinia virus which expresses the poliovirus proteinase 3CD resulted in the correct processing of P1 to yield the three individual capsid proteins VP0, VP3, and VP1. When extracts from coinfected cells were fractionated on sucrose density gradients, the VP0, VP3, and VP1 capsid proteins were immunoprecipitated with type 1 poliovirus antisera from fractions corresponding to a sedimentation consistent for poliovirus 75S procapsids. Examination of these fractions by electron microscopy revealed structures which lacked electron-dense cores and which corresponded in size and shape to those expected for poliovirus empty capsids. We conclude that the expression of the two poliovirus proteins P1 and 3CD in coinfected cells is sufficient for the correct processing of the capsid precursor to VP0, VP3, and VP1 as well as for the assembly of poliovirus empty capsid-like structures.  相似文献   

9.
Defective interfering particles of poliovirus. 3. Interference and enrichment   总被引:10,自引:0,他引:10  
Interference with standard poliovirus growth resulting from co-infection of cells with standard virus and defective interfering particles has been investigated. At all time following infection, co-infected cells produced less standard progeny than cells infected only by standard virus. The total yield of physical particles and the percentage of standard virus among these particles was a linear function of the percentage of standard virus in the inoculum. The actual yield of standard virus thus varied as the square of the percentage of standard virus in the inoculum. The extent of interference could also be controlled by varying the time interval between initial infection of cells by one type of particle and superinfection by the other.Identical amounts of viral RNA and virus-specific polyribosomes are formed in co-infected or singly infected cells. Interference apparently results from the partitioning of these limited synthetic capacities between standard and defective interfering-specific RNA and protein synthesis. Standard and DI RNA appear to serve equally well as messenger RNAs because standard and DI-specific viral proteins are synthesized in ratios proportional to the ratio of standard to DI particles in the inoculum. Only standard RNA can direct the formation of capsid protein, so co-infected cells contain reduced amounts of the virion protein precursor, the procapsid. Standard and DI RNA are encapsidated with approximately equal efficiency. Thus interference results from equal participation in the intracellular events of the infection cycle by both types of particles.The progeny yield from co-infected cells was always enriched about 5 to 8% in DI particles. Progeny were produced in the enriched ratio throughout the infection cycle.  相似文献   

10.
In vitro construction of poliovirus defective interfering particles.   总被引:26,自引:21,他引:5       下载免费PDF全文
To construct poliovirus defective interfering (DI) particles in vitro, we synthesized an RNA from a cloned poliovirus cDNA, pSM1(T7)1, which carried a deletion in the genome region corresponding to nucleotide positions 1663 to 2478 encoding viral capsid proteins, by using bacteriophage T7 RNA polymerase. The RNA was designed to retain the correct reading frame in nucleotide sequence downstream of the deletion. HeLa S3 monolayer cells were transfected with the deletion RNA and then superinfected with standard virus as a helper. The DI RNA was observed in the infected cells after three passages at high multiplicity of infection. The sequence analysis of RNA extracted from the purified DI particle clearly showed that this DI RNA had the same deletion in size and location as that in the RNA used for the transfection. Thus, we succeeded in construction of a poliovirus DI particle in vitro. To gain insight into the mechanism for DI generation, we constructed poliovirus cDNAs pSM1(T7)1a and pSM1(T7)1b that, in addition to the same deletion as that in pSM1(T7)1, had insertion sequences of 4 bases and 12 bases, respectively, at the corresponding nucleotide position, 2978. The RNA transcribed from pSM1(T7)1a was not a template for synthesis of poliovirus nonstructural proteins and therefore was inactive as an RNA replicon. On the other hand, the RNA from pSM1(T7)1b replicated properly in the transfected cells. Superinfection of the transfected cells with standard virus resulted in production of DI particles derived from pSM1(T7)1b and not from pSM1(T7)1a. These observations indicate that deletion RNAs that are inactive replicons have little or no possibility of being genomes of DI particles suggesting the existence of a nonstructural protein(s) that has an inclination to function as a cis-acting protein(s). The method described here will provide a useful technique to investigate genetic information essential for poliovirus replication.  相似文献   

11.
12.
A recombinant vaccinia virus was constructed that expressed poliovirus coat precursor protein P1 fused to about two-thirds of the 2A proteinase. The truncated 2A segment could be cleaved away from the P1 region by coinfecting with poliovirus type 1, 2, or 3 or with human rhinovirus 14 but not with encephalomyocarditis virus. Further cleavage of the vector-derived P1 to yield mature poliovirus capsid proteins was not observed. Attempts to isolate vaccinia virus recombinants containing portions of the poliovirus genome that encompassed the complete gene for proteinase 2A were unsuccessful, unless expression of functional 2A was abolished by insertion of a frameshift mutation. We conclude that an activity of the 2A proteinase, probably its role in translational inhibition, prevented isolation of vaccinia virus recombinants that expressed 2A.  相似文献   

13.
Previous studies have described poliovirus genomes in which the internal ribosome entry (IRES) for encephalomyocarditis virus (EMCV) is positioned between the P1 and P2-P3 open reading frames of the poliovirus genome. Although these dicistronic poliovirus genomes were replication competent, most exhibited evidence of genetic instability, and the EMCV IRES was deleted upon serial passage. One possible reason for instability of the genome is that the dicistronic genome was at least 108% larger than the wild-type poliovirus genome, which could reduce the efficiency of encapsidation. To address this possibility, we have constructed dicistronic poliovirus replicons by substituting the EMCV IRES and the gene encoding luciferase in place of the poliovirus P1 region; the resulting dicistronic replicons are smaller than the wild-type poliovirus genome. One dicistronic genome was constructed in which the poliovirus 5' nontranslated region was fused to the gene encoding luciferase, followed by the complete EMCV IRES fused to the P2-P3 region of the poliovirus genome (PV-Luc-EMCV). A second dicistronic genome, EMCV-Luc-PV, was constructed with the first 108 nucleotides of the poliovirus genome fused to the EMCV IRES, followed by the gene encoding luciferase and the poliovirus IRES fused to the remaining P2-P3 region of the poliovirus genome. Both dicistronic replicons expressed abundant luciferase following transfection of in vitro-transcribed RNA into HeLa cells at 30, 33, or 37 degrees C. The luciferase activity detected from PV-Luc-EMCV increased rapidly during the first 4 h following transfection and then plateaued, peaking after approximately 24 h. In contrast, the luciferase activity detected from EMCV-Luc-PV increased for approximately 12 h following transfection; by 24 h posttransfection, the overall levels of luciferase activity were similar to that of PV-Luc-EMCV. To analyze encapsidation of the dicistronic replicons, we used a system in which the capsid protein (P1) is provided in trans from a recombinant vaccinia virus (VV-P1). The PV-Luc-EMCV replicon was unstable upon serial passage in the presence of VV-P1, with deletions of the EMCV IRES region detected even during the initial transfection at 37 degrees C. Following serial passage in the presence of VV-P1 at 33 or 30 degrees C, we detected deleted genomes in which the luciferase gene was fused with the P2-P3 genes of the poliovirus genome so as to maintain the translational reading frame. In contrast, the EMCV-Luc-PV replicon was genetically stable during passage with VV-P1 at 33 or 30 degrees C. The encapsidation of EMCV-Luc-PV was compared to that of monocistronic replicons encoding luciferase with either a poliovirus or EMCV IRES. Analysis of the encapsidated replicons after four serial passages with VV-P1 revealed that the dicistronic replicon was encapsidated more efficiently than the monocistronic replicon with the EMCV IRES but less efficiently than the monicistronic replicon with the poliovirus IRES. The results of this study suggest a genetic predisposition for picornavirus genomes to contain a single IRES region and are discussed with respect to a role of the IRES in encapsidation.  相似文献   

14.
M Kohara  S Abe  T Komatsu  K Tago  M Arita    A Nomoto 《Journal of virology》1988,62(8):2828-2835
Biological tests including the monkey neurovirulence test performed on recombinants between the virulent Mahoney and attenuated Sabin 1 strains of type 1 poliovirus indicated that the genome region encoding mainly the viral capsid proteins had little correlation with the neurovirulence or attenuation phenotype of the virus. The results suggested that new vaccine strains of type 2 and type 3 polioviruses may be constructed in vitro by replacing the sequence encoding the antigenic determinants in viral capsid proteins of the Sabin 1 genome by the corresponding sequences of the type 2 and type 3 genome, respectively. Accordingly, we constructed recombinants between the Sabin 1 and Sabin 3 strains of poliovirus in which genome sequences of the Sabin 1 strain encoding most or all capsid proteins were replaced by the corresponding genome sequences of the Sabin 3 strain. One of the recombinant viruses thus constructed was fully viable and showed antigenicity and immunogenicity identical to those of type 3 poliovirus. The monkey neurovirulence tests and in vitro phenotypic marker tests (temperature sensitivity of growth, sodium bicarbonate concentration dependency of growth under agar overlay, and size of plaque) were performed on the recombinant virus. The stability of the virus in regard to the temperature sensitivity phenotype was also tested. The results suggested that the recombinant virus is a possible candidate for a new type 3 poliovirus vaccine strain.  相似文献   

15.
16.
Poliovirus RNA genomes that contained deletions in the capsid-coding regions were synthesized in monkey kidney cells that constitutively expressed T7 RNA polymerase. These replication-competent subgenomic RNAs, or replicons (G. Kaplan and V. R. Racaniello, J. Virol. 62:1687–1696, 1988), were encapsidated in trans by superinfecting polioviruses. When superinfecting poliovirus resistant to the antiviral compound guanidine was used, the RNA replication of the replicon RNAs could be inhibited independently of the RNA replication of the guanidine-resistant helper virus. Inhibiting the replication of the replicon RNA also profoundly inhibited its trans-encapsidation, even though the capsid proteins present in the cells could efficiently encapsidate the helper virus. The observed coupling between RNA replication and RNA packaging could account for the specificity of poliovirus RNA packaging in infected cells and the observed effects of mutations in the coding regions of nonstructural proteins on virion morphogenesis. It is suggested that this coupling results from direct interactions between the RNA replication machinery and the capsid proteins. The coupling of RNA packaging to RNA replication and of RNA replication to translation (J. E. Novak and K. Kirkegaard, Genes Dev. 8:1726–1737, 1994) could serve as mechanisms for late proofreading of poliovirus RNA, allowing only those RNA genomes capable of translating a full complement of functional RNA replication proteins to be propagated.  相似文献   

17.
18.
A series of short insertion mutations was introduced into the poliovirus gene for 3Dpol at a number of different locations. When substituted for wild-type sequences in a full-length, infectious cDNA and tested for infectivity, all 3D mutants were nonviable. The mutant cDNAs were introduced into a bacterial plasmid designed to direct the expression of poliovirus 3CD, a viral protein composed of contiguous protease and RNA polymerase sequences. Bacteria transformed with these plasmids all expressed similar amounts of 3CD, and all mutant proteins cleaved themselves to generate wild-type 3Cpro and mutant 3Dpol polypeptides with approximately the same efficiency as wild-type 3CD. The released mutant 3Dpol proteins were all defective in RNA-dependent RNA polymerase activity in vitro. Uncleaved 3CD is a protease required for processing the viral capsid protein precursor, P1. In an in vitro assay of P1 cleavage activity, some of the mutant 3CD proteins expressed in Escherichia coli showed normal activity, while others were clearly inactive. Thus, alterations in the sequence and/or folding of different regions of the 3D protein have differential effects on its various activities.  相似文献   

19.
20.
Previous studies in our laboratory have demonstrated that cell-free systems translating the Mahoney strain of poliovirus type I RNA utilize two unique initiation sites. In this study, defective-interfering particles of poliovirus, which contain deletions in the region encoding the capsid proteins, are shown to initiate translation of proteins in vitro at these same two sites. Both the standard virus and the defective-interfering virus RNA direct the synthesis of two polypeptides labeled with n-formyl-methionine (fmet) at their amino termini. The size of the smaller fmet polypeptide synthesized in vitro by the defective virus appears identical in size to that of the standard virus. However, the larger-molecular-weight fmet polypeptide is reduced in size from 115,000 to 69,000 daltons. This correlates exactly with the reduced size of the precursor to the capsid proteins synthesized by the defective virus in vivo and with the size of the deletion in the defective virus RNA (1,200 bases). This provides genetic evidence that the 115,000-dalton fmet polypeptide synthesized into vitro by the standard virus is NCVP1a, the precursor to the coat proteins. Although the identity of the small (5,000 to 10,000 daltons) fmet polypeptide is not clear, several lines of evidence enable us to exclude the possibility that it is VP4, the smallest viral capsid protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号