首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The incorporation of [3H]thymidine into the deoxyribonucleic acid (DNA) of Chlamydia psittaci (strain 6BC) growing in thymidine kinase (adenosine 5'-triphosphate-thymidine 5'-phosphotransferase, EC 1.7.1.21)-containing L cells, L(TK+), and thymidine kinase-deficient L cells, LM(TK-), was examined by autoradiography. Label was detected over C. psittaci inclusions in L(TK+) but not LM(TK-) cells. No evidence for a chlamydia-specific thymidine kinase activity in either L(TK+) or LM(TK-) cells was obtained. Entry of [3H]thymidine into the DNA of C. psittaci growing in L(TK+) cells was quantitated by measuring label in purified C. psittaci. It was 265 times less efficient than entry into infected host cell DNA. It is concluded that low levels of exogenous thymidine are incorporated into the DNA of C. psittaci and that this incorporation is dependent on a fully competent host thymidine kinase activity. Evidence also is presented that L cells possess at least two thymidine kinase activities, both of which are capable of supplying thymidylate precursors for nuclear DNA synthesis.  相似文献   

2.
Characterization of an Epstein-Barr virus-induced thymidine kinase.   总被引:5,自引:4,他引:1       下载免费PDF全文
Previous work from our laboratory suggested that the selective inhibition of Epstein-Barr virus (EBV) replication by 1-beta-D-arabinofuranosylthymine in human lymphoid cell lines involved the induction of a new thymidine kinase (TK) able to phosphorylate the thymidine analog. We further characterized this enzyme induced in various EBV-positive cell lines after viral genome activation with a combination of sodium butyrate and 12-O-tetradecanoylphorbol-13-acetate. The following results confirmed the existence of an EBV-specific deoxypyrimidine kinase: induction of EBV-related TK was connected with the appearance of viral early antigens in EBV-carrying cells; unexpected behaviors of the enzyme activity upon different fractionating treatments led to the conclusion that EBV-induced TK was extracted as a complex molecular form, larger than other known cellular or viral isozymes; enzymatic properties distinguished EBV-induced TK from host lymphoid cell isozymes but made it resemble other herpesvirus-specific deoxypyrimidine kinases, i.e., by partial inhibition by dTTP or ammonium sulfate, insensitiveness to dCTP, and nonstringent specificity for normal TK substrates. Genetic evidence is required to definitively ensure that EBV-specific TK actually is virus coded in EBV-transformed human lymphoid cells.  相似文献   

3.
We report that coincubation of 647V cells for one cell cycle with low concentrations (30 microM) of 5'-amino-5'-deoxythymidine increased IdUrd DNA incorporation and radiosensitivity at low extracellular pH (pHe 6.8) in a fashion similar to treatment at normal pHe. IdUrd DNA incorporation is inhibited by high (300 microM) 5'-AdThd concentrations at both normal and low pHe (7.4 and 6.8), resulting in no significant radiosensitization. These results at low pHe were not anticipated based on previously published studies of 5'-AdThd modulation of thymidine kinase (TK) activity and nucleoside cellular uptake. Our results suggest that regulation of intracellular pH (pHi) during the course of one cell cycle negates the 5'-AdThd dose-dependent modulation of TK activity demonstrated previously. Flow cytometric measurement of pHi in 647V cells showed that normal pHi (pH 7.4) was maintained in 647V cells over a 12- to 24-h exposure to low pHe (pH 6.8). Thus the concomitant use of IdUrd and high concentrations of 5'-AdThd (> 30 microM) is unlikely to result in selective in vivo radiosensitization of human tumors under conditions which are intermittently or chronically acidic. However, low concentrations of 5'-AdThd may prove to be an effective in vivo modulator of IdUrd radiosensitization of human tumors under both normal and acidic conditions.  相似文献   

4.
We report the first mutational study of thymidine kinase 1 (TK1) performed in human solid tumors. We sequenced cDNAs representing the complete coding region of TK1 in human breast (n=22) and colorectal (n=26) cancer. Codon 106 near the ATP binding site constantly differed (ATG --> GTG; Met --> Val) from the one deposited by Bradshaw and Deininger in the Genbank database (Accession number NM_003258). Silent polymorphisms at codon 11 (CCC --> CCT; Pro --> Pro) and codon 75 (GCG --> GCA; Ala --> Ala) were frequently detected in tumors as well as in normal tissues. In breast cancer the two polymorphisms were observed in 63.6% of the samples analyzed. No significant association could be found between polymorphisms and TK activity. In colorectal cancer the incidence of the two changes was 73.1% and 69.2%, respectively. Interestingly, one colon cancer with high cytosolic TK activity displayed two missense mutations located in and near the putative phosphorylation site by tyrosine kinase (s) (TAT --> CAT; Tyr --> His) and by cAMP-, cGMP-dependent protein kinase (TAC --> TGC; Tyr --> Cys), respectively; adjacent normal mucosa showed no mutation. This may open new avenues that imply TK1 activity in tumor cell proliferation.  相似文献   

5.
Mycoplasmas are unable to synthesize purine and pyrimidine bases de novo. Therefore, salvage of existing nucleosides and bases is essential for their survival. Four mycoplasma species were studied with regard to their ability to phosphorylate deoxynucleosides. High levels of thymidine kinase (TK), deoxycytidine kinase (dCK), deoxyguanosine kinase (dGK) and deoxyadenosine kinase (dAK) activities were detected in extracts from Mycoplasma pneumoniae, Mycoplasma mycoides subsp. mycoides SC (M. mymySC), Acholeplasma laidlawii (A. laidlawii) and Mycoplasma arginini (M. arginini). Nucleoside phosphotransferase activities were found at high levels in A. laidlawii and low levels in M. arginini. Pyrophosphate-dependent deoxynucleoside kinase activities were detected mainly in A. laidlawii and M. mymySC extracts. Two open reading frames were identified in the M. mymySC genome; one showed 25% sequence identity to human dGK and the other one had about 26% sequence identity to human TK1. The M. mymySC dGK-like enzyme was cloned, expressed in Escherichia coli and affinity-purified. This enzyme phosphorylated dAdo, dGuo and dCyd, and the highest catalytic rate was with dAdo as substrate. Therefore, we suggest that this enzyme should be named deoxyadenosine kinase. The physiological role of mycoplasma dAK and TK may be to support the unusually large dATP and dTTP pools required for replication of mycoplasma genomes.  相似文献   

6.
Studies of herpes simplex virus type 1 (HSV-1) thymidine (dThd) kinase (TK) crystal structures show that purine and pyrimidine bases occupy distinct positions in the active site but approximately the same geometric plane. The presence of a bulky side chain, such as tyrosine at position 167, would not be sterically favorable for pyrimidine or pyrimidine nucleoside analogue binding, whereas purine nucleoside analogues would be less affected because they are located further away from the phenylalanine side chain. Site-directed mutagenesis of the conserved Ala-167 and Ala-168 residues in HSV-1 TK resulted in a wide variety of differential affinities and catalytic activities in the presence of the natural substrate dThd and the purine nucleoside analogue drug ganciclovir (GCV), depending on the nature of the amino acid mutation. A168H- and A167F-mutated HSV-1 TK enzymes turned out to have a virtually complete knock-out of dThd kinase activity (at least approximately 4-5 orders of magnitude lower) presumably due to a steric clash between the mutated amino acid and the dThd ring. In contrast, a full preservation of the GCV (and other purine nucleoside analogues) kinase activity was achieved for A168H TK. The enzyme mutants also markedly lost their binding capacity for dThd and showed a substantially diminished feedback inhibition by thymidine 5'-triphosphate. The side chain size at position 168 seems to play a less important role regarding GCV or dThd selectivity than at position 167. Instead, the nitrogen-containing side chains from A168H and A168K seem necessary for efficient ligand discrimination. This explains why A168H-mutated HSV-1 TK fully preserves its GCV kinase activity (Vmax/Km 4-fold higher than wild-type HSV-1 TK), although still showing a severely compromised dThd kinase activity (Vmax/Km 3-4 orders of magnitude lower than wild-type HSV-1 TK).  相似文献   

7.
The peroxisome proliferator-activated receptor gamma (PPARgamma), a primary regulator of lipid metabolism, is present in many tumor cell lines and animal tumor systems and, in some cases, can mediate effective antitumor therapy with potent synthetic ligands. In an approach to image tumors with positron-emission tomography (PET) based on their content of PPARgamma, we have synthesized two fluorine-substituted analogues of a high affinity ligand from the phenylpropanoic acid class. The analogue having the highest affinity for PPARgamma was labeled with the positron-emitting radionuclide fluorine-18. In tissue distribution studies in normal rats and in SCID mice bearing human breast tumor xenografts, this compound did not show evidence of receptor-mediated uptake. The prospects for using PPARgamma as a target for imaging tumors may be limited by the low receptor concentrations in tumors and by the pharmacokinetic behavior of this class of ligands, which appears to be more favorable for therapy than for imaging.  相似文献   

8.
Abstract

Cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK) and the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK), phosphorylate deoxynucleosides and their analogs. Recombinant human TK1 only phosphorylated β-D Thd, but recombinant TK2, dCK and dGK all phosphorylated equally well β-D and β-L as well as to some extent α-D and α-L deoxynucleosides.  相似文献   

9.

Background

Colorectal cancer (CRC) is the third major cause of cancer related deaths in the world. 5-fluorouracil (5-FU) is widely used for the treatment of colorectal cancer but as a single-agent renders low response rates. Choline kinase alpha (ChoKα), an enzyme that plays a role in cell proliferation and transformation, has been reported overexpressed in many different tumors, including colorectal tumors. ChoKα inhibitors have recently entered clinical trials as a novel antitumor strategy.

Methodology/Principal Findings

ChoKα specific inhibitors, MN58b and TCD-717, have demonstrated a potent antitumoral activity both in vitro and in vivo against several tumor-derived cell line xenografts including CRC-derived cell lines. The effect of ChoKα inhibitors in combination with 5-FU as a new alternative for the treatment of colon tumors has been investigated both in vitro in CRC-tumour derived cell lines, and in vivo in mouse xenografts models. The effects on thymidilate synthase (TS) and thymidine kinase (TK1) levels, two enzymes known to play an essential role in the mechanism of action of 5-FU, were analyzed by western blotting and quantitative PCR analysis. The combination of 5-FU with ChoKα inhibitors resulted in a synergistic effect in vitro in three different human colon cancer cell lines, and in vivo against human colon xenografts in nude mice. ChoKα inhibitors modulate the expression levels of TS and TK1 through inhibition of E2F production, providing a rational for its mechanism of action.

Conclusion/Significance

Our data suggest that both drugs in combination display a synergistic antitumoral effect due to ChoKα inhibitors-driven modulation of the metabolization of 5-FU. The clinical relevance of these findings is strongly supported since TCD-717 has recently entered Phase I clinical trials against solid tumors.  相似文献   

10.
New technologies are needed to characterize the migration, survival, and function of antigen-specific T cells in vivo. Here, we demonstrate that Epstein-Barr virus (EBV)--specific T cells transduced with vectors encoding herpes simplex virus-1 thymidine kinase (HSV-TK) selectively accumulate radiolabeled 2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-iodouracil (FIAU). After adoptive transfer, HSV-TK+ T cells labeled in vitro or in vivo with [131I]FIAU or [124I]FIAU can be noninvasively tracked in SCID mice bearing human tumor xenografts by serial images obtained by scintigraphy or positron emission tomography (PET), respectively. These T cells selectively accumulate in EBV+ tumors expressing the T cells' restricting HLA allele but not in EBV- or HLA-mismatched tumors. The concentrations of transduced T cells detected in tumors and tissues are closely correlated with the concentrations of label retained at each site. Radiolabeled transduced T cells retain their capacity to eliminate targeted tumors selectively. This technique for imaging the migration of ex vivo-transduced antigen-specific T cells in vivo is informative, nontoxic, and potentially applicable to humans.  相似文献   

11.
In an attempt to determine whether mouse cytomegalovirus (MCMV) requires thymidine kinase (TK) for replication and whether it induces TK, TK-deficient mouse cells were isolated and used as host cells for MCMV. Mutant cells resistant to 200 μg/ml of 5-Bromodeoxyuridine (BUdR) were selected from SV40-transformed mouse cells, mks-A TU-7, by propagating the cells in the presence of varying concentrations of BUdR graded by serial 2-fold increments. The mutant cells, designated as TU-7 BU, showed a very low TK activity (less than 1/20 that of mks-A TU-7). Herpes simplex virus type 1 (HSV-1) replicated in starved as well as in unstarved TU-7 BU, whereas MCMV could replicate only in growing TU-7 BU and could not form plaques in monolayers of mks-A TU-7 or TU-7 BU. HSV-1 infection enhanced TK activity equally in both mks-A TU-7 and TU-7 BU. In contrast, TK activity of MCMV-infected mks-A TU-7 was lower than that of uninfected cells or cells inoculated with UV-inactivated virus. In addition, TK activity of the MCMV-infected TU-7 BU remained minimal without showing any increase. The replication of HSV-1 was completely inhibited in the presence of BUdR (10 μg/ml), whereas MCMV could replicate even in the presence of 50 μg/ml of BUdR. The results indicate that MCMV neither requires TK nor induces TK activity in the infected cells.  相似文献   

12.
The carboranyl nucleotides beta-D-5-o-carboranyl-2'-deoxyuridine (D-CDU), 1-(beta-L-arabinosyl)-5-o-carboranyluracil (D-ribo-CU) and the nucleotide base 5-o-carboranyluracil (CU), were developed as sensitizers for boron neutron capture therapy (BNCT). A structure activity study was initiated to determine the agent most suitable for targeting prostate tumors. Cellular accumulation studies were performed using LNCaP human prostate tumor cells, and the respective tumor disposition profiles were investigated in male nude mice bearing LNCaP and 9479 human prostate tumor xenografts in their flanks. D-CDU achieved high cellular concentrations in LNCaP cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. In vivo concentrations of D-CDU were similar in LNCaP and 9479 tumor xenografts. Studies in 9479 xenografted bearing mice indicated that increasing the number of hydroxyl groups in the sugar moeity of the carboranyl nucleosides corresponded with an increased rate and extent of renal elimination, shorter serum half-lives and an increased tissue specificity. Tumor/normal prostate ratios were greatest with the nucleoside base CU. These studies indicate that similar nucleoside analogues and bases may have different tissue affinities and retention properties, which should be considered when selecting agents for sensitizing specific tumors for eventual BNCT treatment. CU was found to be the most suitable compound for further development to treat prostate cancer.  相似文献   

13.
Cytosolic thymidine kinase (TK1) cDNA from human lymphocytes was cloned, expressed in Escherichia coli, purified, and characterized with respect to the ATP effect on thymidine affinity and oligomerization. Sequence analysis of this lymphocyte TK1 cDNA and 21 other cDNAs or genomic TK1 DNAs from healthy cells or leukemic or transformed cell lines revealed a valine at amino acid position 106. The TK1 sequence in NCBI GenBank(TM) has methionine at this position. The recombinant lymphocyte TK1(Val-106) (rLy-TK1(Val-106)) has the same enzymatic and oligomerization properties as endogenous human lymphocyte TK1 (Ly-TK1); ATP exposure induces an enzyme concentration-dependent reversible transition from a dimer to a tetramer with 20-30-fold higher thymidine affinity (K(m) about 15 and 0.5 microm, respectively). Substitution of Val-106 with methionine to give rLy-TK1(Met-106) results in a permanent tetramer with the high thymidine affinity (K(m) about 0.5 microm), even without ATP exposure. Furthermore, rLy-TK1(Met-106) is considerably less stable than rLy-TK1(Val-106) (t(12) at 15 degrees C is 41 and 392 min, respectively). Because valine with high probability is the naturally occurring amino acid at position 106 in human TK1 and because this position has high impact on the enzyme properties, the Val-106 form should be used in future investigations of recombinant human TK1.  相似文献   

14.
Melatonin and eicosapentaenoic and 10t,12c-conjugated linoleic acids suppress the growth-stimulating effects of linoleic acid (LA) and its metabolism to the mitogenic agent 13-(S)-hydroxyoctadecadienoic acid (13-(S)-HODE) in established rodent tumors and human cancer xenografts. Here we compared the effects of these 3 inhibitory agents on growth and LA uptake and metabolism in human FaDu squamous cell carcinoma xenografts perfused in situ in male nude rats. Results demonstrated that these agents caused rapid inhibition of LA uptake, tumor cAMP content, 13-(S)-HODE formation, extracellular signal-regulated kinase p44/ p42 (ERK 1/2) activity, mitogen-activated protein kinase kinase (MEK) activity, and [3H]thymidine incorporation into tumor DNA. Melatonin's inhibitory effects were reversible with either the melatonin receptor antagonist S20928, pertussis toxin, forskolin, or 8-bromoadenosine-cAMP, suggesting that its growth-inhibitory effect occurs in vivo via a receptor-mediated, pertussis-toxin-sensitive pathway.  相似文献   

15.
Thymidine kinase (TK), DNA polymerase, and DNase activities were induced in human foreskin fibroblasts after varicella-zoster virus infection. The induced TK and DNase activities have electrophoretic mobilities different from the corresponding host enzymes. Varicella-zoster virus-induced TK was purified and separated from the host enzyme by affinity column chromatography. This enzyme has been shown to have a broader substrate specificity with respect to either the phosphate donor or acceptor as compared with human cytoplasmic and mitochondrial TKs. The best phosphate donor is ATP, with a Km of 16 microM. The Km values of thymidine, deoxycytidine, and 5-propyl deoxyuridine were estimated to be 0.4, 180, and 0.8 microM, respectively. The Ki values for several analogs of thymidine such as 5-iododeoxyuridine, arabinofuranosylthymine, 5-ethyl deoxyuridine, and 5-cyanodeoxyuridine were also examined. TTP acted as a noncompetitive inhibitor with respect to thymidine with a Ki of 5 microM. The kinetic behavior of varicella-zoster virus-induced TK is different from human cytoplasmic, human mitochondrial, and herpes simplex virus type 1- and 2-induced TKs.  相似文献   

16.
The thymidine (dThd) kinase (TK) encoded by herpes simplex virus type 1 (HSV-1) is not only endowed with dThd kinase, but also with thymidylate (dTMP) kinase and 2'-deoxycytidine (dCyd) kinase (dCK) activity. HSV-1 TK also recognizes a variety of antiherpetic guanine nucleoside analogues such as acyclovir (ACV), ganciclovir (GCV), lobucavir (LBV), penciclovir (PCV), and others (i.e., A5021). Site-directed mutagenesis of the highly conserved Ala-167 to Tyr in HSV-1 TK completely abolished TK, dTMP-K, and dCK activity, but maintained ACV-, GCV-, LBV-, PCV-, and A5021-phosphorylating capacity. A variety of 5-substituted pyrimidine nucleoside substrates, but also a number of selective HSV-1 TK inhibitors structurally related to thymine lost significant binding affinity for the mutant enzyme and did not markedly compete with GCV phosphorylation by the mutant enzyme. These findings could be explained by computer-assisted modeling data that revealed steric hindrance of the pyrimidine ring in the HSV-1 TK active site by the large 4-hydroxybenzyl ring of 167-Tyr, while the positioning of the purine ring of guanine-based HIV-1 TK substrates in the active site was kept virtually unaltered. Surprisingly, the efficiency of conversion the antiherpetic 2'-deoxyguanosine analogues ACV, GCV, LBV, PCV, and A5021 to their phosphorylated forms by the A167Y mutant HSV-1 TK was far more pronounced than for the wild-type enzyme. Therefore, the single A167Y mutation converts the wild-type HSV-1 TK from a predominantly pyrimidine nucleos(t)ide kinase into a virtually exclusive purine (guanine) nucleoside analogue kinase.  相似文献   

17.
Oncogenic mutations of the receptor tyrosine kinase KIT are encountered in myeloid leukemia and various solid tumors, including gastrointestinal stromal tumors. We previously identified the human oncogenic germ line mutant KIT(K642E), a substitution in the tyrosine kinase 1 domain (TK1D) in a familial form of gastrointestinal stromal tumors. The effects of oncogenic KIT mutants on cell signaling and regulation are complex. Cellular models are valuable basic tools to tailor novel strategies on specific cellular and molecular bases for tumors expressing KIT oncogenic mutants. Murine KIT(WT) and the murine homologues of human KIT oncogenic mutants, further referred to as KIT(K641E) and KIT(del559), a point deletion in the juxtamembrane domain (JMD), were stably expressed in IL-3-dependent Ba/F3 cells. Major differences in the constitutively activation of Akt/PKB, MAP kinases and STATs pathways were observed between KIT(K641E) and KIT(del559), whereas KIT ligand elicited responses in both mutants. Noteworthy, the protein level of the phosphoinositide phosphatase SHIP1, but not SHIP2 and PTEN, was reduced in KIT(K641E) only while inhibition of KIT phosphorylation reversibly raised SHIP1 level in both JMD and TK1D oncogenic mutants, unraveling the control of SHIP protein level by KIT phosphorylation.  相似文献   

18.
Summary Chromosome-mediated gene transfer (CMGT) of the human genes for hypoxanthine phosphoribosyl transferase (HPRT) and cytosol thymidine kinase (TK1) into HPRT deficient mouse A9 cells or TK deficient Swiss mouse 3T3TK cells was found to occur at frequencies at least one order of magnitude higher than DNA-mediated gene transfer (DMGT). The frequency of CMGT into 3T3TK cells was reduced by more than an order of magnitude by a posttreatment of the recipient cells with dimethyl sulphoxide (DMSO). After CMGT, expression of the non-selected genes coding for galactokinase (GALK) and acid alpha-glucosidase (GAA), both syntenic with TK1, was observed in a number of transformants. From the pattern of cotransfer, a tentative gene ordering of CENTROMERE-GALK-TK1-GAA on human chromosome 17 was deduced. Chromosome-mediated cotransfer of X-linked human phosphoglycerate kinase (PGK) with HPRT was observed in two out of 33 A9 transformants analysed. DNA-mediated cotransfer of a syntenic gene was only observed for GALK, cotransferred with TK1 in two out of 18 TK+ transformants of mouse LTK cells. Therefore, with murine cells as recipients of human donor genetic material, CMGT results in a higher frequency of transfer and a higher incidence of cotransfer of syntenic genes than DMGT using cellular DNA in the same cell system.  相似文献   

19.
In these studies, the expression of thymidine kinase (TK) in normal and herpes simplex virus (HSV)-transformed L cells has been compared. In asynchronously dividing cultures of L cells, the TK activity rose and declined rapidly and coordinately with DNA synthesis. When net cell increase stopped, TK activity was at a minimum. In contrast, TK activity of HSV-transformed cells remained at a minimum during rapid DNA synthesis and gradually increased as the rate of DNA synthesis decreased. When net cell increase stopped, TK activity was at a maximum. In synchronous cultures of L cells, TK activity rose and fell coordinately with the rate of DNA synthesis. In synchronous cultures of HSV-transformed cells, no increase in TK activity was observed during the period of rapid DNA synthesis, i.e., the S phase. These findings indicated that the viral TK gene in HSV-transformed cells was not placed under the control of the cellular mechanisms which normally modulate the host cell TK gene. Lytic infection of HSV-transformed cells with a TK(-) mutant of HSV-1 induced a four-to fivefold increase in viral TK. The TK of HSV-1 was induced in the HSV-1-transformed cells and HSV-2 in the HSV-2-transformed cells by this TK(-) mutant. The same infection of normal L cells decreased the cellular TK activity by 80%. This stimulation, rather than inhibition, suggest that the viral gene in HSV-transformed cells retain some of its original viral characteristics.  相似文献   

20.
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a chlorine disinfection by-product in drinking water, is carcinogenic in rats and genotoxic in mammalian cells in vitro. In the current study, the mechanism of genotoxicity of MX in human lymphoblastoid TK6 cells was investigated by use of the Comet assay, the micronucleus test, and the thymidine kinase (TK) gene-mutation assay. MX induced a concentration-dependent increase in micronuclei and TK mutations. The lowest effective concentrations in the MN test and the TK gene-mutation assay were 37.5μM and 25μM, respectively. In the Comet assay, a slight although not statistically significant increase was observed in the level of DNA damage induced by MX in the concentration range of 25-62.5μM. Molecular analysis of the TK mutants revealed that MX induced primarily point mutations or other small intragenic mutations (61%), while most of the remaining TK mutants (32%) were large deletions at the TK locus, leading to the hemizygous-type loss-of-heterozygosity (LOH) mutations. These findings show that aside from inducing point mutations, MX also generates LOH at the TK locus in human cells and may thus cause the inactivation of tumour-suppressor genes by LOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号