首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of porphobilinogen (PBG) with PBG deaminase from Rhodopseudomonas sphaeroides in carbonate buffer (pH 9.2) to total PBG consumption resulted in low yields of uroporphyrinogen I (uro'gen I). In the reaction mixture a pyrrylmethane accumulated, which at longer incubation periods was transformed into uro'gen I. The accumulated pyrrylmethane gave an Ehrlich reaction which was different from that of a 2-(aminomethyl)dipyrrylmethane or 2-(aminomethyl)tripyrrane. It resembled that of a bilane (tetrapyrrylmethane) but was different from that of a 2-(hydroxymethyl)bilane. The 13C NMR spectra of incubations carried out with [11-13C]PBG indicated that the pyrrylmethane was a tetrapyrrole with methylene resonances at 22.35-22.50 ppm. It was loosely bound to the deaminase, and when separated from the enzyme by gel filtration or gel electrophoresis, it immediately cyclized to uro'gen I. No enzyme-bound methylene could be detected by its chemical shift, suggesting that its line width must be very broad. When uro'gen III-cosynthase was added to the deaminase-tetrapyrrole complex, uro'gen III was formed at the expense of the latter in about 75% yield. The tetrapyrrole could only be partially displaced from the enzyme by ammonium ions, although a small amount of 2-(aminomethyl)bilane was always formed together with the tetrapyrrole intermediate. A protonated uro'gen I structure for this intermediate was ruled out by incubations using [2,11-13C]PBG. Uro'gen III formation from 2-(hydroxymethyl)bilane (HMB) and from the deaminase-tetrapyrrole intermediate was compared by using deaminase-cosynthase and cosynthase from several sources. It was found that while the HMB inhibited uro'gen III formation at higher concentrations and longer incubation times, uro'gen III formation from the complex did not decrease with time.  相似文献   

2.
High-field NMR spectroscopic methods have been applied to study the reactions catalyzed by porphobilinogen (PBG) deaminase and uroporphyrinogen III (uro'gen III) cosynthase, which are the enzymes responsible for the formation of the porphyrin macrocycle. The action of these enzymes in the conversion of PBG, [2,11-13C]PBG, and [3,5-13C]PBG to uro'gens I and III has been followed by 1H and 13C NMR, and assignments are presented. The principal intermediate that accumulated was the correspondingly labeled (hydroxymethyl)bilane (HMB), the assignments for which are also presented.  相似文献   

3.
The active site of porphobilinogen (PBG)1 deaminase (EC 4.3.1.8) from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-224, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA- strain of E. coli the enzyme was enriched from [5-13C]ALA and examined by 1H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked head to tail and terminating in a CH2-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-[2,11-13C2]PBG reveals that the aninomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the alpha-free pyrrole. NMR spectroscopy of the ES2 complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the alpha-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.  相似文献   

4.
E K Jaffe  G D Markham 《Biochemistry》1988,27(12):4475-4481
13C NMR has been used to observe the equilibrium complex of [5,5-2H,5-13C]-5-aminolevulinate [( 5,5-2H,5-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [5,5-2H,5-13C]ALA (chemical shift 46.9 ppm in D2O) was prepared from [5-13C]ALA through enolization in deuteriated neutral potassium phosphate buffer. In the PBG synthase reaction [5,5-2H,5-13C]ALA forms [2,11,11-2H,2,11-13C]PBG (chemical shifts 116.2 ppm for C2 and 34.2 ppm for C11 in D2O). For the complex formed between [5,5-2H,5-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation but can form a Schiff base adduct, the chemical shift of 44.2 ppm (line width 92 Hz) identifies an imine structure as the predominant tautomeric form of the Schiff base. By comparison to model compounds, the stereochemistry of the imine has been deduced; however, the protonation state of the imine nitrogen remains unresolved. Reconstitution of the MMTS-modified enzyme-Schiff base complex with Zn(II) and 2-mercaptoethanol results in the holoenzyme-bound equilibrium complex; this complex contains predominantly enzyme-bound PBG, and spectra reveal two peaks from bound PBG and two from free PBG. For bound PBG, C2 is -2.8 ppm from the free signal and C11 is +2.6 ppm from the free signal; the line widths of the bound signals are 55 and 75 Hz, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
E K Jaffe  G D Markham 《Biochemistry》1987,26(14):4258-4264
13C NMR has been used to observe the equilibrium complex of [4-13C]-5-aminolevulinate ([4-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [4-13C]ALA (chemical shift = 205.9 ppm) forms [3,5-13C]PBG (chemical shifts = 121.0 and 123.0 ppm). PBG prepared from a mixture of [4-13C]ALA and [15N]ALA was used to assign the 121.0 and 123.0 ppm resonances to C5 and C3, respectively. For the enzyme-bound equilibrium complex formed from holoenzyme and [4-13C]ALA, two peaks of equal area with chemical shifts of 121.5 and 127.2 ppm are observed (line widths approximately 50 Hz), indicating that the predominant species is probably a distorted form of PBG. When excess free PBG is present, it is in slow exchange with bound PBG, indicating an exchange rate of less than 10 s-1, which is consistent with the turnover rate of the enzyme. For the complex formed from [4-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation, the predominant species is a Schiff base adduct (chemical shift = 166.5 ppm, line width approximately 50 Hz). Free ALA is in slow exchange with the Schiff base. Activation of the MMTS-modified enzyme-Schiff base complex with 113Cd and 2-mercaptoethanol results in the loss of the Schiff base signal and the appearance of bound PBG with the same chemical shifts as for the bound equilibrium complex with Zn(II) enzyme. Neither splitting nor broadening from 113Cd-13C coupling was observed.  相似文献   

6.
The trimethylated intermediate of vitamin B12 (corrin) biosynthesis, precorrin-3, was produced from various 13C-enriched isotopomers of 5-aminolevulinic acid (ALA), using a multiple-enzyme system containing ALA dehydratase, porphobilinogen deaminase, uro'gen III synthetase, and the S-adenosyl-L-methionine-(SAM)-dependent uro'gen III methyltransferase (M-1) and precorrin-2 methyltransferase (M-2) in the presence of [13C]SAM. Structural analysis of the resulting product, precorrin-3, reveals a close similarity to precorrin-2 but with several subtle differences in the conjugated array of C = C and C = N bonds which reflect the presence of the new C-methyl group at C20 and its influence on the electronic distribution in the dipyrrocorphin chromophore. The implications of this structure for corrin biosynthesis are discussed.  相似文献   

7.
Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through 13C and 15N NMR. To our knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by 13C or 15N NMR. Here we extend our 13C NMR studies to PBGS complexes with [3,3-2H2,3-13C]ALA and report 15N NMR studies of [15N]ALA bound to PBGS. As in our previous 13C NMR studies, observation of enzyme-bound 15N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pKa is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent (kexchange greater than 10(2) s-1). For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C4 of ALA and an active-site lysine. The 13C chemical shift of [3,3-2H2,3-13C]ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between [15N]ALA and hydrazine or hydroxylamine, the 15N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation; again the protons are in rapid exchange with solvent. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C4 of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.  相似文献   

8.
The binding of NADP+ to dihydrofolate reductase (EC 1.5.1.3) in the presence and absence of substrate analogs has been studied using 1H and 13C nuclear magnetic resonance (NMR). NADP+ binds strongly to the enzyme alone and in the presence of folate, aminopterin, and methotrexate with a stoichiometry of 1 mol of NADP+/mol of enzyme. In the 13C spectra of the binary and ternary complexes, separate signals were observed for the carboxamide carbon of free and bound [13CO]NADP+ (enriched 90% in 13C). The 13C signal of the NADP+-reductase complex is much broader than that in the ternary complex with methotrexate because of exchange line broadening on the binary complex signal. From the difference in line widths (17.5 +/- 3.0 Hz) an estimate of the dissociation rate constant of the binary complex has been obtained (55 +/- 10 sec-1). The dissociation rate of the NADP+-reductase complex is not the rate-limiting step in the overall reaction. In the various complexes studied large 13C chemical shifts were measured for bound [13CO]NADP+ relative to free NADP+ (upfield shifts of 1.6-4.3 ppm). The most likely origin of the bound shifts lies in the effects on the shieldings of electric fields from nearby charged groups. For the NADP+-reductase-folate system two 13C signals from bound NADP+ are observed indicating the presence of more than one form of the ternary complex. The IH spectra of the binary and ternary complexes confirm both the stoichiometry and the value of the dissociation rate constant obtained from the 13C experiments. Substantial changes in the IH spectrum of the protein were observed in the different complexes and these are distinct from those seen in the presence of NADPH.  相似文献   

9.
The binary complex of diacetylchloramphenicol and chloramphenicol acetyltransferase (CAT) has been studied by a combination of isotope-edited 1H NMR spectroscopy and site-directed mutagenesis. One-dimensional HMQC spectra of the complex between 1,3-[2-13C]diacetylchloramphenicol and the type III natural variant of CAT revealed the two methyl 1H signals arising from each 13C-labeled carbon atom in the acetyl groups of the bound ligand. Slow hydrolysis of the 3-acetyl group by the enzyme precluded further analysis of this binary complex. It was possible to slow down the rate of hydrolysis by use of the catalytically defective S148A mutant of CATIII (Lewendon et al., 1990); in the complex of diacetylchloramphenicol with S148A CATIII, the chemical shifts of the acetyl groups of the bound ligand were the same as in the wild-type complex. The acetyl signals were individually assigned by repeating the experiment using 1-[2-13C],3-[2-12C]diacetylchloramphenicol, where only one signal from the bound ligand was observed. A two-dimensional 1H, 1H NOESY experiment, with 13C(omega 2) half-filter, on the 1,3-[2-13C]diacetylchloramphenicol/S148A CATIII complex showed a number of intermolecular NOEs from each methyl group in the ligand to residues in the chloramphenicol binding site. The 3-acetyl group showed strong NOEs to two aromatic signals which were selected for assignment. The possibility that the NOEs originated from the aromatic protons of diacetylchloramphenicol itself was eliminated by assignment of the signals from enzyme-bound diacetylchloramphenicol and chloramphenicol using perdeuterated CATIII. Examination of the X-ray crystal structure of the chloramphenicol/CATIII binary complex indicated four plausible candidate aromatic residues: Y25, F33, F103, and F158.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
17O electron nuclear double resonance (ENDOR) studies at X-band (9-GHz) and Q-band (35-GHz) microwave frequencies reveal that the [4Fe-4S]+ cluster of substrate-free aconitase [citrate (isocitrate) hydro-lyase, EC 4.2.1.3] binds solvent, HxO (x = 1, 2). Previous 17O ENDOR studies [Telser et al. (1986) J. Biol. Chem. 261, 4840-4846] had disclosed that Hx17O binds to the enzyme-substrate complex and also to complexes of enzyme with the substrate analogues trans-aconitate and nitroisocitrate (1-hydroxy-2-nitro-1,3-propanedicarboxylate). We have used 1H and 2H ENDOR to characterize these solvent species. We propose that the fourth ligand of Fea in substrate-free enzyme is a hydroxyl ion from the solvent; upon binding of substrate or substrate analogues at this Fea site, the solvent species becomes protonated to form a water molecule. Previous 17O and 13C ENDOR studies [Kennedy et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8854-8858] showed that only a single carboxyl, at C-2 of the propane backbone of cis-aconitate or at C-1 of the inhibitor nitroisocitrate, coordinates to the cluster. Together, these results imply that enzyme-catalyzed interconversion of citrate and isocitrate does not involve displacement of an endogenous fourth ligand, but rather addition of the anionic carboxylate ligand and a change in protonation state of a solvent species bound to Fea. We further report the 17O hyperfine tensor parameters of the C-2 carboxyl oxygen of substrate bound to the cluster as determined by the field dependence of the 17O ENDOR signals. 17O ENDOR studies also show that the carboxyl group of the inhibitor trans-aconitate binds similarly to that of substrate.  相似文献   

11.
L C Kurz  C Frieden 《Biochemistry》1987,26(25):8450-8457
The 13C NMR spectra of [2-13C]- and [6-13C]purine ribosides have been obtained free in solution and bound to the active site of adenosine deaminase. The positions of the resonances of the bound ligand are shifted relative to those of the free ligand as follows: C-2, -3.7 ppm; C-6, -73.1 ppm. The binary complexes are in slow exchange with free purine riboside on the NMR time scale, and the dissociation rate constant is estimated to be 13.5 s-1 from the slow exchange broadening of the free signal. In aqueous solution, protonation of purine riboside at N-1 results in changes in 13C chemical shift relative to those of the free base as follows: C-2, -4.9 ppm; C-6, -7.9 ppm. The changes in chemical shift that occur when purine riboside binds to the enzyme indicate that the hybridization of C-6 changes from sp2 to sp3 in the binary complex with formation of a new bond to oxygen or sulfur. A change in C-2 hybridization can be eliminated as can protonation at N-1 as the sole cause of the chemical shift changes. The kinetic constants for the adenosine deaminase catalyzed hydrolysis of 6-chloro- and 6-fluoropurine riboside have been compared, and the reactivity order implies that carbon-halogen bond breaking does not occur in the rate-determining step. These observations support a mechanism for the enzyme in which formation of a tetrahedral intermediate is the most difficult chemical step. Enzymic stabilization of this intermediate may be an important catalytic strategy used by the enzyme to lower the standard free energy of the preceding transition state.  相似文献   

12.
B D Ray  B D Rao 《Biochemistry》1988,27(15):5574-5578
31P NMR measurements were made (at 121.5 MHz and 5 degrees C) on enzyme-bound substrate complexes of 3-phosphoglycerate kinase in order to address three questions pertaining to (i) the integrity of the enzyme-substrate complexes with Mg(II) in the presence of sulfate concentrations typical of those used for crystallization in X-ray studies, (ii) the relative affinities of Mg(II) to ATP bound at the two sites on the enzyme, and (iii) the pH behavior of the different phosphate groups in the enzyme complexes. 31P chemical shift and spin-spin coupling constant changes showed that at concentrations of 0.5 M and higher, sulfate ion interferes with Mg(II) chelation to ATP and ADP free in solution as well as in their enzyme-bound complexes. The effect on enzyme complexes is stronger for the E.MgATP complex than for the E.MgADP complex. Sulfate ion (50 mM) also causes a approximately 0.5 ppm upfield chemical shift of the 31P resonance of enzyme-bound 3-P-glycerate even in the absence of ATP or Mg(II). A quantitative estimate of the dispartate affinities of Mg(II) to ATP bound at the two sites on the enzyme was made on the basis of computer simulation of changes in the line shape of beta-P (ATP) resonance and of changes in 31P chemical shift of the corresponding gamma-P (ATP) in the E.ATP complex with increasing [Mg(II)]. The concentrations of the relevant species that contribute to these 31P NMR signals were computed by assuming independent binding at the two sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The biosynthesis of vitamin B12.   总被引:2,自引:0,他引:2  
The use of 13C-Fourier transform nuclear magnetic resonance (F.t.-n.m.r.) has led to the observation that while 8 molecules of [2-13C]ALA are incorporated into vitamin B12 in P. shermanii, [5-13C]ALA labels only seven of the carbon atoms of cyanocobalamin, i.e. one of the amino methyl groups of ALA is "lost" in the process. It has also been confirmed that seven of the methyl groups of B12 are derived from 13CH3-enriched methionine and further that the chirality of the gemdimethyl grouping at C12 labelled with [13CH3]methionine is R. A soluble enzyme mixture from the 37000 or 100000 g supernatant of disrupted cells of P. shermanii converts both 14 C-labelled ALA and [14C]uro'gen III to cobyrinic acid, the simplest corrinoid material on the pathway to vitamin B12 and the coenzyme, in presence of NADPH, Co2+, Mg2+, S-adenosyl-methionine and glutathione. Multiply-labelled uro'gens (13C, 14C and 3H) have been used to show that incorporation takes place without randomization. A sequence for corrin synthesis from uro'gen III is presented.  相似文献   

14.
P V Tishler 《Life sciences》1999,65(2):207-214
Drugs and toxins precipitate life-threatening acute attacks in patients with intermittent acute porphyria. These materials may act by directly inhibiting enzyme activity, thus further reducing porphobilinogen (PBG) deaminase activity below the ca. 50% level that results from the gene defect. To test this, we studied the effects of drugs that precipitate acute attacks (lead, phenobarbital, griseofulvin, phenytoin, sulfanilamide, sulfisoxazole, 17alpha-ethinyl estradiol, 5beta-pregnan-3alpha-ol-20-one), drugs that are safe (lithium, magnesium, chlorpromazine, promethazine), and those with uncertain effects (ethyl alcohol, imipramine, diazepam, haloperidol) on activity of PBG deaminase in vitro and in vivo. In the in vitro studies, of PBG deaminase from human erythrocytes from normals and individuals with IAP, only lead (> or = .01 mM) inhibited enzyme activity. Chlorpromazine (> or = .01 mM), promethazine (> or = .01 mM) and imipramine (1 mM) seemed to increase enzyme activity. In most in vivo experiments, male rats were injected intraperitoneally with test material twice daily for 3 days and once on day four; and erythrocyte and hepatic PBG deaminase activity was assayed thereafter. Effects on enzyme activity were observed only with 17alpha-ethinyl estradiol (0.05 microg/kg/day; reduction of 11% in erythrocyte enzyme [NS], and of 20% in liver enzyme [P=.02]), and imipramine (12.5 mg/kg/day; reduction in erythrocyte enzyme activity of 13% [P<.001]). Rats given lead acetate in their drinking water (10 mg/ml) for the first 60 days of life, resulting in high blood and liver lead levels, had increased erythrocyte PBG deaminase (167% of control; P=.004). Thus, enzyme inhibition by lead in vitro was not reflected in a similar in vivo inhibition. The only inhibitory effects in vivo, with ethinyl estradiol and imipramine, appear to be mild and biologically inconsequential. We conclude that inhibition of PBG deaminase activity by materials that precipitate acute attacks is an unlikely mechanism by which these materials exert their harmful effects in patients with IAP.  相似文献   

15.
Highly stable labelled complexes are formed between porphobilinogen deaminase and stoicheiometric amounts of [14C]porphobilinogen. On completion of the catalytic cycle by the addition of excess of substrate, the complexes yield labelled product and display all the properties expected from covalently bound enzyme intermediates involved in the deaminase catalytic sequence.  相似文献   

16.
The synthetic ketone peptide analogue of pepstatin, isovaleryl-L-valyl-[3-13C]-(3-oxo-4S)-amino-6-methylheptanoyl-L-al anyl-isoamylamide is a strong inhibitor of aspartyl proteases. When the peptide is added to porcine pepsin in H2O at pH 5.1, the 13C NMR chemical shift of the ketone carbon moves from 208 ppm for the inhibitor in solution to 99.07 ppm when bound to the enzyme active site. In 2H2O the bound shift is 98.71 ppm, 0.36 ppm upfield. For the analogous experiment contrasting H216O and H218O, the 13C chemical shift was 0.05 ppm to higher field for the heavier isotope. These data show that water, and not an enzyme nucleophile, adds to the peptide carbonyl to yield a tetrahedral diol adduct in the enzyme-catalyzed reaction, and provide a method for differentiating between covalent and non-covalent mechanisms.  相似文献   

17.
Y H Wong  P A Frey 《Biochemistry》1979,18(24):5337-5341
When UDP-galactose 4-epimerase is inactivated by p-(bromoacetamido)phenyl uridyl pyrophosphate (BUP), the diphosphopyridine nucleotide (DPN) associated with this enzyme as a tightly bound coenzyme cannot be reduced by substrates or by UMP-activated reduction by glucose. Upon acid denaturation of the inactivated enzyme, the DPN released corresponded to 15-30% of that released from the native enzyme. When the enzyme is inactivated by [14C]BUP, about 80% of the radioactivity bound at the active site is released from the protein upon acid denaturation. When epimerase-[3H]DPN is inactivated with [14C]BUP, the 3H and 14C released from the protein upon denaturation of the complex cochromatograph on DEAE-Sephadex. Experiments with [nicotinamide-4-3H]DPN and [adenine-2,8-3H]DPN show that it is the adenine ring that is alkylated. The data suggest that the adenine ring of DPN in epimerase-DPN may be oriented near the glycosyl-binding subsite of this enzyme. Since the nicotinamide ring must also be near this site, it appears that the DPN may not be in an extended conformation when it is bound at the active site of UDP-galactose 4-epimerase from Escherichia coli.  相似文献   

18.
The Arabidopsis thaliana open reading frame At4g20960 predicts a protein whose N-terminal part is similar to the eubacterial 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate deaminase domain. A synthetic open reading frame specifying a pseudomature form of the plant enzyme directed the synthesis of a recombinant protein which was purified to apparent homogeneity and was shown by NMR spectroscopy to convert 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate into 5-amino-6-ribosylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate at a rate of 0.9 micromol mg(-1) min(-1). The substrate and product of the enzyme are both subject to spontaneous anomerization of the ribosyl side chain as shown by (13)C NMR spectroscopy. The protein contains 1 eq of Zn(2+)/subunit. The deaminase activity could be assigned to the N-terminal section of the plant protein. The deaminase domains of plants and eubacteria share a high degree of similarity, in contrast to deaminases from fungi. These data show that the riboflavin biosynthesis in plants proceeds by the same reaction steps as in eubacteria, whereas fungi use a different pathway.  相似文献   

19.
1. [4-13C]Nicotinate was synthesised and used to support the growth of a nicotinate auxotrophic mutant of Pseudomonas putida. 13C-NMR spectroscopy of the isolated urocanase confirmed the efficient incorporation of 13C into C4 of the nicotinamide ring of the tightly bound NAD+ cofactor. 2. beta-[( 2'-13C]Imidazol-4-yl)propionate was synthesised according to known procedures and used for inhibition of the 13C-labelled urocanase. An increase in the absorbance at 330 nm indicated adduct formation between enzyme-bound NAD+ and inhibitor. The adduct was stabilised by oxidation with phenazine methosulfate and isolated using a slight modification of the procedure of Matherly et al. [Matherly, L. H., DeBrosse, C. W. & Phillips, A. T. (1982) Biochemistry 21, 2789-2794]. 3. The 13C-NMR spectrum of the doubly labelled adduct, [4-13C]NAD-[2'-13C]imidazolylpropionate, showed no one-bond 13C-13C coupling between labelled sites. The 1H-NMR spectrum of this adduct in 2H2O showed only one imidazole signal, which appeared as a doublet (1JC-H = 212 Hz), confirming the presence of a proton at the labelled C2'. The lack of a C5' signal and further NMR data provide evidence for a C-C bond between C4 of the nicotinamide and C5' of the imidazole ring. 4. The revised structure for the enzymatically formed addition complex suggests a novel mechanism for the urocanase reaction which is not only chemically plausible but also explains the previously observed urocanase-catalysed exchange of the C5 proton of urocanate and of beta-(imidazol-4-yl)propionate.  相似文献   

20.
The esterase activity of guinea-pig serum was investigated. A 3-fold purification was achieved by removing the serum albumin by Blue Sepharose CL-6B affinity chromatography. The partially purified enzyme preparation had carboxylesterase and cholinesterase activities of 1.0 and 0.22 mumol of substrate/min per mg of protein respectively. The esterases were labelled with [3H]di-isopropyl phosphorofluoridate (DiPF) and separated electrophoretically on sodium dodecyl sulphate/polyacrylamide gels. Two main labelled bands were detected: band I had Mr 80 000 and bound 18-19 pmol of [3H]DiPF/mg of protein, and band II had Mr 58 000 and bound 7 pmol of [3H]DiPF/mg of protein. Bis-p-nitrophenyl phosphate (a selective inhibitor of carboxylesterase) inhibited most of the labelling of bands I and II. The residual labelling (8%) of band I but not band II (4%) was removed by preincubation of partially purified enzyme preparation with neostigmine (a selective inhibitor of cholinesterase). Paraoxon totally prevented the [3H]DiPF labelling of the partially purified enzyme preparation. Isoelectrofocusing of [3H]DiPF-labelled and uninhibited partially purified enzyme preparation revealed that there were at least two separate carboxylesterases, which had pI3.9 and pI6.2, a cholinesterase enzyme (pI4.3) and an unidentified protein that reacts with [3H]DiPF and has a pI5.0. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of these enzymes showed that the carboxylesterase enzymes at pI3.9 and pI6.2 corresponded to the 80 000-Mr subunit (band I) and 58 000-Mr subunit (band II). The cholinesterase enzyme was also composed of 80 000-Mr subunits (i.e. the residual labelling in band I after bis-p-nitrophenyl phosphate treatment). The unidentified protein at pI5.0 corresponded to the residual labelling in band II (Mr 58 000), which was insensitive to neostigmine and bis-p-nitrophenyl phosphate. These studies show that the carboxylesterase activity of guinea-pig serum is the result of at least two separate and distinct enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号