首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial superantigens (SAgs) are potent activators of T lymphocytes and play a pathophysiological role in Gram-positive septic shock and food poisoning. To characterize potential MHC class II binding sites of the bacterial SAg staphylococcal enterotoxin (SE) A, we performed alanine substitution mutagenesis throughout the C-terminus and at selected sites in the N-terminal domain. Four amino acids in the C-terminus were shown to be involved in MHC class II binding. Three of these amino acids, H225, D227 and H187, had a major influence on MHC class II binding and appeared to be involved in coordination of a Zn2+ ion. Alanine substitution of H225 and D227 resulted in a 1000-fold reduction in MHC class II affinity. Mutation at F47, which is equivalent to the F44 previously shown to be central in the MHC class II binding site of the SAg, SEB, resulted in a 10-fold reduction in MHC class II affinity. The combination of these mutations in the N- and C-terminal sites resulted in a profound loss of activity. The perturbation of MHC class II binding in the various mutants was accompanied by a corresponding loss of ability to induce MHC class II-dependent T cell proliferation and cytotoxicity. All of the SEA mutants were expressed as Fab-SEA fusion proteins and found to retain an intact T cell receptor (TCR) epitope, as determined in a mAb targeted MHC class II-independent T cell cytotoxicity assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Ligands binding to Toll-like receptor (TLR), interleukin 1 receptor (IL-1R), or IFN-γR1 are known to trigger MyD88-mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which bind to MHC class II molecules on APCs and cross link T cell receptors, activate MyD88- mediated pro-inflammatory cytokine responses. We also reported that MyD88(-/-) mice were resistant to SE- induced toxic shock and had reduced levels of serum cytokines. In this study, we investigated whether MHC class II- SE interaction by itself is sufficient to activate MyD88 in MHC class II(+) cells and induce downstream pro-inflammatory signaling and production of cytokines such as TNF-α and IL-1β. Here we report that human monocytes treated with SEA, SEB, or anti-MHC class II monoclonal antibodies up regulated MyD88 expression, induced activation of NF-kB, and increased expression of IL-1R1 accessory protein, TNF-α and IL-1β. MyD88 immunoprecipitated from cell extracts after SEB stimulation showed a greater proportion of MyD88 phosphorylation compared to unstimulated cells indicating that MyD88 was a component of intracellular signaling. MyD88 downstream proteins such as IRAK4 and TRAF6 were also up regulated in monocytes after SEB stimulation. In addition to monocytes, primary B cells up regulated MyD88 in response to SEA or SEB stimulation. Importantly, in contrast to primary B cells, MHC class II deficient T2 cells had no change of MyD88 after SEA or SEB stimulation, whereas MHC class II-independent activation of MyD88 was elicited by CpG or LPS. Collectively, these results demonstrate that MHC class II utilizes a MyD88-mediated signaling mechanism when in contact with ligands such as SEs to induce pro-inflammatory cytokines.  相似文献   

3.
Multiple binding sites on the staphylococcal enterotoxin A (SEA) molecule which interact with class II MHC Ag have been suggested by previous studies comparing SEA binding with that of another superantigen, toxic shock syndrome toxin-1. Using the synthetic peptide approach we have identified multiple regions of the SEA molecule which are responsible for binding to HLA Ag on Raji cells. Overlapping peptides were synthesized corresponding to the complete amino acid sequence of SEA: SEA(1-45), SEA(39-66), SEA(62-86), SEA(83-104), SEA(102-124), SEA(121-149), SEA(146-173), SEA(166-193), SEA(187-217), and SEA(211-233). Like the native SEA molecule, all of the peptides exhibited relatively high beta-sheet and low alpha-helical structure as determined by circular dichroism spectroscopy. A direct competition assay was employed with peptide blockage of 125I-SEA binding to MHC Ag. SEA(1-45), SEA(39-66), SEA(62-86), and SEA(121-149) but none of the other peptides blocked binding to Raji cells. The relative potency of the peptides in blocking SEA binding was determined with SEA(39-66) much greater than SEA(1-45) = SEA(62-86) = SEA(121-149). Peptide competition was seen at concentrations as low as 55 microM. Further, antibodies were produced to all of the peptides and tested for their ability to bind to SEA and inhibit SEA binding to HLA. Consistent with the direct inhibition of binding, antisera to SEA(1-45), SEA(39-66), and SEA(62-86) reduced the ability of SEA to bind Raji cells, whereas, antisera to the remaining peptides failed to block binding. The data suggest that the binding of the superantigen SEA to MHC molecules involves several N-terminal regions on SEA as well as an additional internal domain. This allows for the presence of multiple binding sites in an extended N-terminal region of the SEA molecule or a discontinuous binding epitope.  相似文献   

4.
Crystal structure of the superantigen staphylococcal enterotoxin type A.   总被引:1,自引:1,他引:1  
Staphylococcal enterotoxins are prototype superantigens characterized by their ability to bind to major histocompatibility complex (MHC) class II molecules and subsequently activate a large fraction of T-lymphocytes. The crystal structure of staphylococcal enterotoxin type A (SEA), a 27 kDa monomeric protein, was determined to 1.9 A resolution with an R-factor of 19.9% by multiple isomorphous replacement. SEA is a two domain protein composed of a beta-barrel and a beta-grasp motif demonstrating the same general structure as staphylococcal enterotoxins SEB and TSST-1. Unique for SEA, however, is a Zn2+ coordination site involved in MHC class II binding. Four amino acids including Ser1, His187, His225 and Asp227 were found to be involved in direct coordination of the metal ion. SEA is the first Zn2+ binding enterotoxin that has been structurally determined.  相似文献   

5.
Staphylococcal enterotoxins (SEs) are superantigenic protein toxins responsible for a number of life-threatening diseases. The X-ray structure of a staphylococcal enterotoxin A (SEA) triple-mutant (L48R, D70R, and Y92A) vaccine reveals a cascade of structural rearrangements located in three loop regions essential for binding the alpha subunit of major histocompatibility complex class II (MHC-II) molecules. A comparison of hypothetical model complexes between SEA and the SEA triple mutant with MHC-II HLA-DR1 clearly shows disruption of key ionic and hydrophobic interactions necessary for forming the complex. Extensive dislocation of the disulfide loop in particular interferes with MHC-IIalpha binding. The triple-mutant structure provides new insights into the loss of superantigenicity and toxicity of an engineered superantigen and provides a basis for further design of enterotoxin vaccines.  相似文献   

6.
The X-ray structure of the superantigen staphylococcal enterotoxin H (SEH) has been determined at 1.69 A resolution. In this paper we present two structures of zinc-free SEH (apoSEH) and one zinc-loaded form of SEH (ZnSEH). SEH exhibits the conventional superantigen (SAg) fold with two characteristic domains. In ZnSEH one zinc ion per SEH molecule is bound to the C-terminal beta-sheet in the region implicated for major histocompatibility complex class II (MHC class II) binding in SEA, SED and SEE. Surprisingly, the zinc ion has only two ligating amino acid residues His206 and Asp208. The other ligands to the zinc ion are two water molecules. An extensive packing interaction between two symmetry-related molecules in the crystal, 834 A(2)/molecule, forms a cavity that buries the zinc ions of the molecules. This dimer-like interaction is found in two crystal forms. Nevertheless, zinc-dependent dimerisation is not observed in solution, as seen in the case of SED. A unique feature of SEH as compared to other staphylococcal enterotoxins is a large negatively charged surface close to the Zn(2+) site. The interaction of SEH with MHC class II is the strongest known among the staphylococcal enterotoxins. However, SEH seems to lack a SEB-like MHC class II binding site, since the side-chain properties of structurally equivalent amino acid residues in SEH and those in SEB-binding MHC class II differ dramatically. There is also a structural flexibility between the domains of SEH. The domains of two apoSEH structures are related by a 5 degrees rotation leading to at most 3 A difference in C(alpha) positions. Since the T-cell receptor probably interacts with both domains, SEH by this rotation may modulate its binding to different TcR Vbeta-chains.  相似文献   

7.
The staphylococcal enterotoxins are a family of bacterial toxins that are thought to exert their pathogenic effects by the massive activation of T lymphocytes to produce lymphokines. Activation of T cells by these toxins is dependent on MHC class II+ APC. Recent studies from a number of laboratories have implicated MHC class II proteins as the APC surface receptor for a number of the staphylococcal enterotoxins. The present report shows that staphylococcal enterotoxin A, (SEA) binds to the purified murine MHC class II molecule I-Ed reconstituted in supported planar membranes, indicating that no other cell surface proteins are required for SEA binding. The Kd for SEA binding to I-Ed was determined to be 3.5 +/- 1.6 x 10(-6) M. Specific binding of SEA to I-Ad was also observed, but the interaction was of significantly lower affinity. Binding of SEA to purified I-Ed was blocked by antibodies against both the alpha- and the beta-chain of the I-Ed molecule, but not by antibodies specific for an unrelated MHC class II protein. Binding of SEA to I-Ad was blocked by an A beta d but not by an A alpha d-specific antibody. Planar membranes containing only lipid and purified I-Ed molecules were sufficient for activation of a V beta 1 expressing T hybrid by SEA. The T cells responded to as few as 180 toxin molecules per T cell.  相似文献   

8.
The structure of a mutant form of staphylococcal enterotoxin A (SEA) has been determined to 2.1 A resolution. The studied SEA substitution H187-->A187 (SEAH187A) leads to an almost 10-fold reduction of the binding to major histocompatibility complex (MHC) class II. H187 is important for this interaction since it coordinates Zn2+. The zinc ion is thought to hold MHC class II and SEA together in a complex. Interestingly, only one of two molecules in the asymmetric unit binds Zn2+. H225, D227, a water molecule, and H44 from a symmetry-related molecule ligate Zn2+. The symmetry-related histidine is necessary for this substituted Zn2+ site to bind to Zn2+ at low zinc concentration (no Zn2+ added). Since a water molecule replaces the missing H187, H44 binds Zn2+ at the position where betaH81 from MHC class II probably will bind. Dynamic light scattering analysis reveals that in solution as well as in the crystal lattice the SEA(H187A) mutant forms aggregates. The substitution per se does not cause aggregation since wild-type SEA also forms aggregates. Addition of EDTA reduces the size of the aggregates, indicating a cross-linking function of Zn2+. In agreement with the biological function, the aggregation is weak (i.e. not revealed by gel filtration) and non-specific.  相似文献   

9.
Binding of staphylococcal enterotoxin A (SEA) to MHC class II encoded proteins is a prerequisite for its subsequent activation of a large fraction of T lymphocytes through interaction with variable segments of the TCR-beta chain. We cloned SEA in Escherichia coli and produced four recombinant fragments covering both the N- and C-terminal regions. These fragments were used to analyze the interaction between SEA and the human MHC class II products. A C-terminal fragment of SEA, representing amino acids 107-233 bound to HLA-DR and HLA-DP but did not activate T cells. The three other fragments (amino acids 1-125, 1-179 and 126-233) neither bound to MHC class II Ag nor activated T cells. SEA apparently bind to HLA-DR and HLA-DP through its C-terminal part, whereas T cell activation is dependent on additional parts of the protein.  相似文献   

10.
Several computational methods for the prediction of major histocompatibility complex (MHC) class II binding peptides embodying different strengths and weaknesses have been developed. To provide reliable prediction, it is important to design a system that enables the integration of outcomes from various predictors. The construction of a meta-predictor of this type based on a probabilistic approach is introduced in this paper. The design permits the easy incorporation of results obtained from any number of individual predictors. It is demonstrated that this integrated method outperforms six state-of-the-art individual predictors based on computational studies using MHC class II peptides from 13 HLA alleles and three mouse MHC alleles obtained from the Immune Epitope Database and Analysis Resource. It is concluded that this integrative approach provides a clearly enhanced reliability of prediction. Moreover, this computational framework can be directly extended to MHC class I binding predictions.  相似文献   

11.
Ia antigen is a receptor for the superantigen staphylococcal enterotoxin A (SEA). Peptides I-A beta b(30-60), I-A beta b(50-70), I-A beta b(65-85), and I-A beta b(80-100) of the MHC class II antigen beta chain on mouse (H-2b) accessory cells were synthesized. Only I-A beta b(65-85) inhibited SEA binding to the mouse B-cell lymphoma line, A20 (H-2d) and the human Burkitt's lymphoma line, Raji (HLA-DR). The I-A beta b(65-85) sequence is a predicted alpha-helix along the hypothetical antigen binding cleft of the Ia molecule. I-A beta b(65-85) also directly and specifically bound both the intact SEA molecule and its Ia binding site, represented by the peptide SEA(1-45). The results suggest that I-A beta b region (65-85) is a necessary site for Ia molecular interaction with the superantigen SEA. Further, the data suggest that the same helical region of other Ia antigens binds SEA irrespective of haplotype and species.  相似文献   

12.
Relative ability of distinct isotypes of human major histocompatibility complex class II molecules to bind staphylococcal enterotoxin A (SEA) was investigated. SEA-binding was observed in L cells transfected with DR2 and DQw1 genes. By contrast, it was not detected in L cells transfected with DPw4 and DP (Cp63) genes. All the transfectants supported SEA-induced IL-2 production by human T cells. Levels of the accessory activity were low in the DPw4 and DP (Cp63) transfectants compared with the DR2 and DQw1 transfectants. In view of the observation that all the transfectants express well the transfected gene products on their surface, the results indicate that DR and DQ molecules bind SEA with high affinity, while DP molecules bind it with fairly low affinity.  相似文献   

13.
The coupling between peptides and MHC-II proteins in the human immune system is not well understood. This work presents an evidence-based hypothesis of a guiding intermolecular force present in every human MHC-II protein (HLA-II). Previously, we examined the spatial positions of the fully conserved residues in all HLA-II protein types. In each one, constant planar patterns were revealed. These molecular planes comprise of amino acid groups of the same chemical species (for example, Gly) distributed across the protein structure. Each amino acid plane has a unique direction and this directional element offers spatial selectivity. Constant within all planes, too, is the presence of an aromatic residue possessing electrons in movement, leading the authors to consider that the planes generate electromagnetic fields that could serve as an attractive force in a single direction. Selection and attraction between HLA-II molecules and antigen peptides would, therefore, be non-random, resulting in a coupling mechanism as effective and rapid as is clearly required in the immune response. On the basis of planar projections onto the HLA-II groove, modifications were made by substituting the key residues in the class II-associated invariant chain peptide—a peptide with a universal binding affinity—resulting in eight different modified peptides with affinities greater than that of the unmodified peptide. Accurate and reliable prediction of MHC class II-binding peptides may facilitate the design of universal vaccine-peptides with greatly enhanced binding affinities. The proposed mechanisms of selection, attraction and coupling between HLA-II and antigen peptides are explained further in the paper.  相似文献   

14.
Immunization of mice with a melanoma vaccine coupled with staphylococcal enterotoxin A (SEA) inhibits the growth of primary melanoma tumors in mice. We have now successfully transfected B16 cells with the sea gene and have immunized C57BL/6 mice subcutaneously once per week for 4 weeks prior to tumor challenge with vaccines of irradiated B16 cells or, 4 weeks following tumor challenge of naïve mice with B16 cells, with irradiated B16 cells transfected with the sea gene. Primary tumor growth following both types of treatments was inhibited significantly. To characterize immune responses to these immunogens, we examined the production of antibodies to the B700 melanoma antigen, the stimulation of endogenous IL-2 production, the expression of CD4, CD8, Vβ and CD25 T cell markers, and the induction of NK activity. At 4 weeks following immunization of mice, there was a significant increase (P<0.05) in levels of interleukin-2 production by splenocytes from mice immunized with SEA-secreting B16 cells or with the parental B16 cells, compared to controls. Levels of antibodies to the B700 melanoma antigen were also significantly higher in mice immunized with the SEA-secreting B16 cells, as was expression of CD4, CD8, CD25 and Vβ T cell antigens, particularly CD4. Natural killer cell activity (at various E:T ratios) was tenfold higher in splenocytes of mice immunized with SEA-secreting B16 cells, and fivefold higher in mice immunized with the parental B16 cells, compared to controls.?These data confirm the possibility of using irradiated murine melanoma cells transfected to secrete SEA in vaccines targeted at preventing the development and growth of melanoma.  相似文献   

15.
Staphylococcal enterotoxins (SE) are known to be potent T cell activators, stimulating +/- proliferation and lymphokine production. These toxins have recently have been termed "superantigens" because of their ability to bind directly to class II molecules forming a ligand that interacts with particular V beta gene elements within the TCR complex. This interaction between SE and MHC class II molecules plays a central role in toxin-induced mitogenesis. In the present study we have examined the effect of polymorphism on the ability of MHC class II molecules to bind and present SE. Through the use of H-2 congenic mouse strains, it was possible to look directly at haplotype differences within the MHC and their effect on SE presentation to a panel of responsive V beta-bearing T cells. The results demonstrate that toxin presentation by class II-bearing accessory cells to murine T cells is greatly affected by polymorphisms within the H-2 complex. Toxin-pulsed accessory cells obtained from mice of an H-2k and H-2u haplotype were found to be less efficient in activating a variety of T cell clones and hybridomas. However, one T cell clone responded similarly to the enterotoxins presented on all H-2 haplotypes, suggesting that differences in responses of T cells are not simply a function of the degree of binding of these toxins to various class II molecules. Neutralization analysis with monoclonal anti-class II antibodies demonstrates that both I-A and I-E molecules play a significant role in SEA and SEB presentation to murine T cells. These results suggest that the differential activation of T cells by a particular enterotoxin may reflect a difference in recognition of an SE:class II ligand by a surface T cell receptor complex.  相似文献   

16.
The bacterial superantigen staphylococcal enterotoxin A (SEA) stimulates T cells bearing certain TCR V domains when binding to MHC II molecules, and is a potent inducer of CTL activity and cytokine production. Antibody-targeted SEA such as C215 Fab-SEA and C242 Fab-SEA has been investigated for cancer therapy in recent years. We have previously reported significant tumor inhibition and prolonged survival time in tumor-bearing mice treated with a combination of both C215Fab-SEA and Ad IL-18 (Wang et al., Gene Therapy 8:542–550, 2001). In order to develop SEA as an universal biological preparation in cancer therapy, we first cloned a SEA gene from S. aureus (ATCC 13565) and a transmembrane (TM) sequence from a c-erb-b2 gene derived from human ovarian cancer cell line HO-8910, then generated a TM-SEA fusion gene by using the splice overlap extension method, and constructed the recombinant expression vector pET-28a-TM-SEA. Fusion protein TM-SEA was expressed in E. coli BL21(DE3)pLysS and purified by using the histidine tag in this vector. Purified TM-SEA spontaneously associated with cell membranes as detected by flow cytometry. TM-SEA stimulated the proliferation of both human PBLs and splenocytes derived from C57BL/6 (H-2b) mice in vitro. This study thus demonstrated a novel strategy for anchoring superantigen SEA onto the surfaces of tumor cells without any genetic manipulation.Abbreviations SEA staphylococcal enterotoxin A - TM transmembrane - NK cell natural killer cell - CTL cytotoxic T lymphocyte Drs W. Ma and H. Yu are joint corresponding authors for this article.  相似文献   

17.
CD4 is a coreceptor for binding of T cells to APC and the primary receptor for HIV. The disulfide bond in the second extracellular domain (D2) of CD4 is reduced on the cell surface, which leads to formation of disulfide-linked homodimers. A large conformational change must take place in D2 to allow for formation of the disulfide-linked dimer. Domain swapping of D2 is the most likely candidate for the conformational change leading to formation of two disulfide-bonds between Cys130 in one monomer and Cys159 in the other one. Mild reduction of the extracellular part of CD4 resulted in formation of disulfide-linked dimers, which supports the domain-swapped model. The functional significance of dimer formation for coreceptor function was tested using cells expressing wild-type or disulfide-bond mutant CD4. Eliminating the D2 disulfide bond markedly impaired CD4's coreceptor function. Modeling of the complex of the TCR and domain-swapped CD4 dimer bound to class II MHC and Ag supports the domain-swapped dimer as the immune coreceptor. The known involvement of D4 residues Lys318 and Gln344 in dimer formation is also accommodated by this model. These findings imply that disulfide-linked dimeric CD4 is the preferred coreceptor for binding to APC.  相似文献   

18.
The role of the cytokines IL-1 alpha, IL-1 beta, and IL-6 and the cell adhesion molecules ICAM-1, LFA-1 (alpha and beta), and Mac-1 as accessory molecules for stimulation of T cells by the superantigen staphylococcal enterotoxin B (SEB) was examined. Both blood monocytes and alveolar macrophages were used as accessory cells because these cells differ in patterns of cytokine expression and thus potentially in accessory cell function for superantigens. The blastogenic response of highly purified T cells to SEB was reconstituted with either monocytes or alveolar macrophages. IL-1 secretion was increased comparably in monocytes and alveolar macrophages by SEB, but IL-6 was not stimulated by SEB. IL-1 alpha plus IL-1 beta reconstituted the response of T cells to SEB but required the addition of accessory cells. The cell adhesion molecules ICAM-1 and LFA-1 but not Mac-1 also functioned as accessory molecules for SEB-induced cluster formation and lymphocyte blastogenesis. Thus, not only must this superantigen bind to Class II MHC on accessory cells as is well known, but also SEB requires at least certain cytokines (IL-1 alpha and IL-1 beta) produced by accessory cells and cell adhesion molecules (ICAM-1 and LFA-1) for activation of T lymphocytes.  相似文献   

19.
Interaction of staphylococcal exotoxins (SE) with MHC class II molecules plays a central role in the activation of immune cells by SE. We have recently demonstrated directly that toxic shock syndrome toxin-1 (TSST-1) binds to MHC class II molecules with high affinity, and similar results have been reported for SEA and SEB. The ability of T cells to respond to individual SE is associated with the expression of particular TCR-V beta gene elements. In the present study we have examined the effect of polymorphism on the ability of MHC class II molecules to bind SEB and TSST-1. We have used a panel of L cell transfectants that express different allelic forms of each of the three human class II isotypes. Radioligand binding assays detected binding of SEB and TSST-1 to most, but not all of the MHC class II molecules examined. Toxin-driven MHC class II-dependent T cell proliferation occurred with all transfectants examined even in the absence of detectable toxin binding. These results indicate that SE can bind to human MHC class II molecules of diverse phenotypes.  相似文献   

20.
The previously determined crystal structure of the superantigen staphylococcal enterotoxin C2 (SEC2) showed binding of a single zinc ion located between the N- and C-terminal domains. Here we present the crystal structure of SEC2 determined to 2.0 A resolution in the presence of additional zinc. The structure revealed the presence of a secondary zinc-binding site close to the major histocompatibility complex (MHC)-binding site of the toxin and some 28 A away from the primary zinc-binding site of the toxin found in previous studies. T cell stimulation assays showed that varying the concentration of zinc ions present affected the activity of the toxin and we observed that high zinc concentrations considerably inhibited T cell responses. This indicates that SEC2 may have multiple modes of interaction with the immune system that are dependent on serum zinc levels. The potential role of the secondary zinc-binding site and that of the primary one in the formation of the TCR.SEC2.MHC complex are considered, and the possibility that zinc may regulate the activity of SEC2 as a toxin facilitating different T cell responses is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号