首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of exogenous polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effects on polyamine metabolism were investigated. Our data show that, in contrast to mammalian cells, Chlamydomonas reinhardtii does not contain short-living, high-affinity polyamine transporters whose cellular level is dependent on the polyamine concentration. However, exogenous polyamines affect polyamine metabolism in Chlamydomonas cells. Exogenous putrescine caused a slow increase of both putrescine and spermidine and, vice versa, exogenous spermidine also led to an increase of the intracellular levels of both spermidine and putrescine. No intracellular spermine was detected under any conditions. Exogenous spermine was taken up by the cells and caused a decrease in their putrescine and spermidine levels. As in other organisms, exogenous polyamines led to a decrease in the activity of ornithine decarboxylase, a key enzyme of polyamine synthesis. In contrast to mammalian cells, this polyamine-induced decrease in ornithine decarboxylase activity is not mediated by a polyamine-dependent degradation or inactivation, but exclusively due to a decreased synthesis of ornithine decarboxylase. Translation of ornithine decarboxylase mRNA, but not overall protein biosynthesis is slowed by increased polyamine levels.  相似文献   

2.
Polyamines play an important role in the control of cell growth and cell division. In the unicellular green alga Chlamydomonas reinhardtii as in animal cells, biosynthesis of the 3 commonly occurring polyamines (putrescine, spermidine and spermine) is dependent on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17) catalyzing the formation of putrescine, which is the precursor of the other two polyamines. Therefore, we have investigated the regulation of ODC activity during the cell cycle of Clamydomonas reinhardtii using synchronized cultures. A 2.5–3-fold increase in ODC activity was observed during the transition to the cell division phase. This up-regulation of ODC activity was not due to an increased level of ODC-mRNA as revealed by northern-blot analyses, but correlated with an increased half-life of this particular enzyme (from 1.1 to 3.2 h). Addition of the DNA topoisomerase II inhibitor nalidixic acid during the second half of the growth period caused a transient decrease of ODC activity and a considerable delay of cell divisions. After cell division, a down-regulation of ODC activity was observed which was faster in the dark than in the light and also correlated with changes of the ODC half-life.  相似文献   

3.
4.
5.
In most eukaryotes, subtelomeres are dynamic genomic regions populated by multi-copy sequences of different origins, which can promote segmental duplications and chromosomal rearrangements. However, their repetitive nature has complicated the efforts to sequence them, analyse their structure and infer how they evolved. Here, we use recent genome assemblies of Chlamydomonas reinhardtii based on long-read sequencing to comprehensively describe the subtelomere architecture of the 17 chromosomes of this model unicellular green alga. We identify three main repeated elements present at subtelomeres, which we call Sultan, Subtile and Suber, alongside three chromosome extremities with ribosomal DNA as the only identified component of their subtelomeres. The most common architecture, present in 27 out of 34 subtelomeres, is a heterochromatic array of Sultan elements adjacent to the telomere, followed by a transcribed Spacer sequence, a G-rich microsatellite and transposable elements. Sequence similarity analyses suggest that Sultan elements underwent segmental duplications within each subtelomere and rearranged between subtelomeres at a much lower frequency. Analysis of other green algae reveals species-specific repeated elements that are shared across subtelomeres, with an overall organization similar to C. reinhardtii. This work uncovers the complexity and evolution of subtelomere architecture in green algae.  相似文献   

6.
The H1 histones of the unicellular green alga Chlamydomonas reinhardtii were extracted from isolated nuclei, fractionated by high performance liquid chromatography, and analyzed by two-dimensional electrophoresis, peptide mapping, and N-terminal sequencing. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of 5% perchloric acid extracts of isolated C. reinhardtii nuclei revealed two H1 proteins (H1A and H1B). Two-dimensional gel analysis did not reveal heterogeneity of either algal H1 protein, but did detect differences in the hydrophobic amino acid content of the C. reinhardtii H1A and H1B. Digestion of H1A and H1B with V8 protease revealed two distinctly different peptide maps. C. reinhardtii H1 peptide maps were not at all similar to those of Pisum H1, but algal and pea H2B peptide maps did show some peptides in common. Seventeen amino acid residues were obtained from C. reinhardtii H1A amino terminal sequencing, while the H1B N-terminus was blocked. A search of protein data bases revealed no sequence homology of the H1A N-terminus with any known protein. Chlamydomonas histones fractionated by high performance liquid chromatography revealed minor components (histone variants) for H2A and H2B. The amino acid composition of Chlamydomonas lysine-rich histones was compared to those of various other unicellular algae.  相似文献   

7.
The macrolide rapamycin specifically binds the 12-kD FK506-binding protein (FKBP12), and this complex potently inhibits the target of rapamycin (TOR) kinase. The identification of TOR in Arabidopsis (Arabidopsis thaliana) revealed that TOR is conserved in photosynthetic eukaryotes. However, research on TOR signaling in plants has been hampered by the natural resistance of plants to rapamycin. Here, we report TOR inactivation by rapamycin treatment in a photosynthetic organism. We identified and characterized TOR and FKBP12 homologs in the unicellular green alga Chlamydomonas reinhardtii. Whereas growth of wild-type Chlamydomonas cells is sensitive to rapamycin, cells lacking FKBP12 are fully resistant to the drug, indicating that this protein mediates rapamycin action to inhibit cell growth. Unlike its plant homolog, Chlamydomonas FKBP12 exhibits high affinity to rapamycin in vivo, which was increased by mutation of conserved residues in the drug-binding pocket. Furthermore, pull-down assays demonstrated that TOR binds FKBP12 in the presence of rapamycin. Finally, rapamycin treatment resulted in a pronounced increase of vacuole size that resembled autophagic-like processes. Thus, our findings suggest that Chlamydomonas cell growth is positively controlled by a conserved TOR kinase and establish this unicellular alga as a useful model system for studying TOR signaling in photosynthetic eukaryotes.  相似文献   

8.
The LI818 gene from Chlamydomonas encodes a polypeptide that is related to the chlorophyll a/b-binding proteins (CAB) of higher plants and green algae. However, despite this relatedness, LI818 gene expression is not coordinated with that of cab genes and is regulated differently by light, suggesting a different role for LI818 polypeptide. We show here that, in contrast to CAB polypeptides, LI818 polypeptide is not tightly embedded into the thylakoid membranes and is localized in stroma-exposed regions. Moreover, during chloroplast development, LI818 polypeptide accumulates before CAB polypeptides. We also show that the LI818 polypeptide forms with certain chlorophyll a/c-binding proteins (CAC) from the haptophyte Isochrysis galbana and the diatom Cyclotella cryptica a natural group that is distinct from those constituted by CAB, CAC and the chlorophyll a/a-binding proteins (CAA). Such an association suggests a very ancient origin for this group of polypeptides, which predates the division of the early photosynthetic eukaryotes into green (chlorophyte), red (rhodophyte) and brown (chromophyte) algae. Possible roles for the LI818 polypeptide are discussed.  相似文献   

9.
Ladygin VG 《Mikrobiologiia》2003,72(5):658-665
The cell wall-lacking mutant CW-15 of the unicellular green alga Chlamydomonas reinhardtii was transformed by electroporation using plasmid pCTVHyg, which was constructed with the hygromycin phosphotransferase gene hpt as the selective marker and the Tn5 transposon of Escherichia coli under the control of the virus SV40 early gene promoter. Under optimal conditions (10(6) mid-exponential cells/ml; electric field strength 1 kV/cm; and pulse length 2 ms), the transformation yielded 10(3) HygR transformants per 10(6) recipient cells. The exogenous DNA integrated into the nuclear genome of Ch. reinhardtii was persistently inherited through more than 350 cell generations. The advantages of this system for the transformation of Ch. reinhardtii with heterologous genes are discussed.  相似文献   

10.
Molybdenum cofactor (MoCo) of molybdoenzymes is constitutively produced in cells of the green alga Chlamydomonas reinhardtii grown in ammonium media, under which conditions certain molybdoenzymes are not synthesized. In soluble form, MoCo was found to be present in several forms: (i) as a low Mr free species; (ii) bound to a MoCo-carrier protein of about 50 kDa that could release MoCo to directly reconstitute in vitro nitrate reductase activity in the nit-1 mutant of Neurospora crassa, but not to Thiol-Sepharose which, in contrast, bonded free MoCo; and (iii) bound to other proteins, putatively constitutive molybdoenzymes, which only released MoCo after a denaturing treatment. The amount of total MoCo (free, carrier-bound and heat releasable forms) was dependent on the growth phase of cell cultures. Constitutive levels of total MoCo in ammonium-grown cells markedly increased when cells were transferred to media lacking ammonium (nitrate, urea or nitrogen-free media). This increase did not require de novo protein synthesis and was stimulated by light. Levels of both total MoCo and free plus carrier-bound MoCo seemed to be unrelated to either nitrate reductase synthesis or functioning of nit-1 and nit-2 genes responsible for nitrate reductase structure and regulation, respectively. Results suggest that MoCo is continuously synthesized in C. reinhardtii and that its levels are regulated by ammonium in a way independent of nitrate reductase synthesis.  相似文献   

11.
Many microbes in the soil environment experience micro-oxic or anoxic conditions for much of the late afternoon and night, which inhibit or prevent respiratory metabolism. To sustain the production of energy and maintain vital cellular processes during the night, organisms have developed numerous pathways for fermentative metabolism. This review discusses fermentation pathways identified for the soil-dwelling model alga Chlamydomonas reinhardtii, its ability to produce molecular hydrogen under anoxic conditions through the activity of hydrogenases, and the molecular flexibility associated with fermentative metabolism that has only recently been revealed through the analysis of specific mutant strains.  相似文献   

12.
We examined the short-term metabolic processes of arsenate for 24 h in a freshwater unicellular green alga, Chlamydomonas reinhardtii wild-type strain CC-125. The arsenic species in the algal extracts were identified by high-performance liquid chromatography/inductively coupled plasma mass spectrometry after water extraction using a sonicator. Speciation analyses of arsenic showed that the levels of arsenite, arsenate, and methylarsonic acid in the cells rapidly increased for 30 min to 1 h, and those of dimethylarsinic acid and oxo-arsenosugar-glycerol also tended to increase continuously for 24 h, while that of oxo-arsenosugar-phosphate was quite low and fluctuated throughout the experiment. These results indicate that this alga can rapidly biotransform arsenate into oxo-arsenosugar-glycerol for at least 10 min and then oxo-arsenosugar-phosphate through both reduction of incorporated arsenate to arsenite and methylation of arsenite and/or arsenate retained in the cells to dimethylarsinic acid via methylarsonic acid as an possible intermediate.  相似文献   

13.
Summary— The ultrastructural organization of the interphase nucleus of the green alga Chlamydomonas reinhardtii was investigated and found to be largely dependent on the fixation conditions. In specimens stained with bismuth, densely contrasted granules ranging from 25 to 45 nm in diameter were localized throughout the interchromatin space and often formed clusters. These granules were labeled by RNase A-gold complexes and may represent the counterparts of animal and higher plant cll interchromatin granules. Within the nucleolus the Ag-NOR and pyroantimonate stains and, to a lesser extent, the bismuth stain reacted with the nucleolar dense fibrillar component (DFC). When cells were subjected to a heat shock at 42°C, the nucleolar DFC was found to progressively separate from the nucleolus and, after 3 h, appeared as a continuous meandering thread about 0.1 μm in width. Within the nucleolus, labeling on conventional preparations occurred as small clusters with antibodies to H3 histones or to DNA whereas RNase A-gold complexes labeled most of it including fibrillar centers. Improved ultrastructural preservation in cryofixed, cryosubstituted specimens gently fixed in glutaraldehyde permitted to localize nucleolar DNA predominantly at the outer edge of fibrillar centers and to a lesser extent within the neighbouring DFC. Our results indicate that the structure and composition of Chlamydomonas interphase nuclei are comparable, despite particularities, to those of animal and higher plant nuclei.  相似文献   

14.
15.
Summary We describe the preparation of monoclonal antibodies to nuclear antigens in the green alga,Chlamydomonas reinhardtii, and their localization at the light and electron microscope level. Supernatants from hybridomas were screened by the ELISA method and the four antibodies giving the strongest signal were subjected to further analysis. At the LM level immunogold silver staining was used on semi-thick resinless sections. We have examined at the EM level the distribution of these antigens by post-embedding immunocytochemical techniques on sections of conventionally fixed specimens compared to cryofixed and freeze-substituted ones. Enhanced ultrastructural preservation was observed in cells which were cryofixed, freeze-substituted and embedded at –35°C in Lowicryl K4M. Different preparative procedures involving cryofixation and substitution are described. Of the four antibodies three were localized under light and electron microscopy. All three were distributed in the interchromatin space. One of these antigens (QUL4D2, 54 kDa) is also found in the dense fibrillar component and fibrillar centers of the nucleolus.Abbreviations DFC dense fibrillar component - EM electron microscope - FC fibrillar center - GAM5 goat anti-mouse IgM coupled to 5 nm colloidal gold - Ig immunoglobulin - LM light microscope - MAb monoclonal antibody - PAG protein A-gold - PBS phosphate buffered saline - PEG polyethylene glycol  相似文献   

16.
MicroRNAs (miRNAs) are small RNAs, 21 to 22 nucleotides long, with important regulatory roles. They are processed from longer RNA molecules with imperfectly matched foldback regions and they function in modulating the stability and translation of mRNA. Recently, we and others have demonstrated that the unicellular alga Chlamydomonas reinhardtii , like diverse multicellular organisms, contains miRNAs. These RNAs resemble the miRNAs of land plants in that they direct site-specific cleavage of target mRNA with miRNA-complementary motifs and, presumably, act as regulatory molecules in growth and development. Utilizing these findings we have developed a novel artificial miRNA system based on ligation of DNA oligonucleotides that can be used for specific high-throughput gene silencing in green algae.  相似文献   

17.
A cDNA was cloned encoding ornithine decarboxylase (ODC) of the unicellular green alga Chlamydomonas reinhardtii. The polypeptide consists of 396 amino acid residues with 35–37% sequence identity to other eukaryotic ODCs. As indicated by the phylogenetic tree calculated by neighbour joining analysis, the Chlamydomonas ODC has the same evolutionary distances to the ODCs of higher plants and mammalians. The Chlamydomonas ODC gene contains three introns of 222, 133, and 129 bp, respectively. As revealed by Northern-blot analyses, expression of the Chlamydomonas ODC gene is neither altered throughout the vegetative cell cycle nor modulated by exogenous polyamines.  相似文献   

18.
A polyclonal antibody was raised against a recombinant Chlamydomonas 14-3-3-beta-galactosidase (beta-Gal) fusion protein and characterized for its epitope specificity towards the corresponding Chlamydomonas 14-3-3 protein by scan-peptide analysis. This antibody recognized four Chlamydomonas polypeptides with apparent molecular masses 32, 30, 27, and 24 kDa, which also reacted with the antiserum depleted of anti-(Escherichia coli beta-Gal) IgG, but not with the corresponding preimmune serum or the antiserum preincubated with purified 14-3-3 proteins. Western-blot analyses performed with the antibody depleted of anti-(beta-Gal) IgG revealed that more or less pronounced levels of 14-3-3 proteins were present in all subcellular fractions of Chlamydomonas reinhardtii except the nuclei. The highest levels of 14-3-3 protein were observed in the cytosol and microsomal fraction. The 30-kDa isoform was predominant in the cytosol, whereas the 27-kDa isoform was prevalent in the microsomes. When microsomal membranes were separated by sucrose-density-gradient centrifugation, Western-blot analysis revealed distinct patterns of 14-3-3 isoforms in the endoplasmic reticulum, dictyosome, and plasma membrane fractions identified by marker enzyme activities. These findings indicate that the four 14-3-3 proteins of C. reinhardtii differentially interact with endoplasmic reticulum, dictyosomes, and plasma membrane.  相似文献   

19.
Nanoparticles have unique properties that make them attractive for use in industrial and medical technology industries but can also be harmful to living organisms, making an understanding of their molecular mechanisms of action essential. We examined the effect of three different sized poly(isobutyl‐cyanoacrylate) nanoparticles (iBCA‐NPs) on the unicellular green alga Chlamydomonas reinhardtii. We found that exposure to iBCA‐NPs immediately caused C. reinhardtii to display abnormal swimming behaviors. Furthermore, after one hour, most of the cells had stopped swimming and 10%–30% of cells were stained with trypan blue, suggesting that these cells had severely impaired plasma membranes. Observation of the cyto‐ultrastructure showed that the cell walls had been severely damaged and that many iBCA‐NPs were located in the space between the cell wall and plasma membrane, as well as inside the cytosol in some cases. A comparison of three strains of C. reinhardtii with different cell wall conditions further showed that the cell mortality ratio increased more rapidly in the absence of a cell wall. Interestingly, cell mortality over time was essentially identical regardless of iBCA‐NP size if the total surface area was the same. Furthermore, direct observation of the trails of iBCA‐NPs indicated that the first trigger was their contact with the cell wall, which is most likely accompanied by the inactivation or removal of adsorbed proteins from the cell wall surface. Cell mortality was accompanied by the overproduction of reactive oxygen species, which was detected more readily in cells grown under constant light rather than in the dark.  相似文献   

20.
Summary— The interphase nucleus of the green alga, Chlamydomonas reinhardtii, displayed two types of bodies some of them, the dense bodies, lying apparently free in the nucleoplasm while the others were attached to the nucleolus and were, therefore, referred to as nucleolus-associated bodies (NABs). The presence of DNA, RNA and histones in dense bodies was investigated by means of post-embedding immunocytochemistry and cytochemistry using a monoclonal antibody to single and double stranded DNA, a polyclonal antibody to rye H3 histones and RNase A-gold complexes. The dense bodies were shown to contain significant amounts of RNA but neither DNA nor histones were detected; their composition was thus similar to that of the dense bodies described in higher plant cells. We propose that dense bodies might be implicated in the assembly of the 25 to 45 nm granules observed throughout the nucleoplasm of Chalamydomonas interphase nuclei. The composition of NABs was found to be distinct from that of the dense bodies since they were labeled by the antibody to DNA, specially in cryofixed and cryosubstituted specimens. The presence of DNA in NABs together with their intimate association to the nucleolus suggest that they may correspond to specific segments of chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号